Mining elements of siderophore chirality encoded in microbial genomes.

TitleMining elements of siderophore chirality encoded in microbial genomes.
Publication TypeJournal Article
Year of Publication2022
AuthorsButler A, Jelowicki AM, Ogasawara HA, Reitz ZL, Stow PR, Thomsen E
JournalFEBS Lett
Date Published2022 Nov 12

The vast majority of bacteria require iron to grow. A significant iron acquisition strategy is the production of siderophores, which are secondary microbial metabolites synthesized to sequester iron(III). Siderophore structures encompass a variety of forms, of which highly modified peptidic siderophores are of interest herein. State-of-the-art genome mining tools, such as antiSMASH (antibiotics & Secondary Metabolite Analysis SHell), hold the potential to predict and discover new peptidic siderophores, including a combinatoric suite of triscatechol siderophores framed on a triserine-ester backbone of the general class, (DHB- CAA- Ser) (CAA, cationic amino acid). Siderophores with Arg, Lys and Orn, but not Orn, were predicted in bacterial genomes. Fortuitously the Orn siderophore was identified, yet its lack of prediction highlights the limitation of current genome mining tools. The full combinatoric suite of these siderophores, which form chiral iron(III) complexes, reveals stereospecific coordination chemistry encoded in microbial genomes. The chirality embedded in this suite of Fe(III)-siderophores raises the question of whether the relevant siderophore-mediated iron acquisition pathways are stereospecific and selective for ferric siderophore complexes of a defined configuration.

Alternate JournalFEBS Lett
PubMed ID36370136