Chem 109 C

Armen Zakarian
Office: Chemistry Bldn 2217

Chapter 21 Practice Problems set 1

http://web.chem.ucsb.edu/~zakariangroup/courses.html
A D-aldopentose is oxidized by nitric acid to an optically active aldaric acid. A Wohl degradation of the aldopentose leads to a monosaccharide that is oxidized by nitric acid to an optically inactive aldaric acid.

Identify the D-aldopentose

\[
\begin{align*}
&\text{CHO} \\
&\text{HO} \quad \text{H} \\
&\text{H} \quad \text{OH} \\
&\text{H} \quad \text{OH} \\
&\text{CH}_2\text{OH}
\end{align*}
\]
Practice problem 1.3

Starting with the D-pentose, identify the structure of all mentioned monosaccharides based on the following observations.

- A D-pentose does not react with Br₂ but gives a positive Tollens test (reacts with Ag⁺/NH₃)

- After reaction with NaOH/H₂O (ene-diol rearrangement), the D-pentose gives two new D-pentoses, which react with Br₂

- Both of these new D-pentoses, after Wohl degradation followed by reduction with NaBH₄, give an optically inactive alditol

Answers: D-ribulose, D-arabinose, D-ribose, D-erythrose
1a. What other monosaccharide is reduced only to the alditol obtained from

1. D-talose (D-altrose)
2. D-galactose (L-gal)

b. What monosaccharide is reduced to two alditols, one of which is the alditol obtained from the reduction of

1. D-talose (D-tagatose)
2. D-allose (D-psicose)
Practice problem 2a

Draw

1. α-D-idopyranose
2. β-L-tagatofuranose
3. α-L-tagatopyranose
An unknown disaccharide gives a positive Tollens test (reacts with Ag_2O, NaOH). A β-1,4’-glycosidase hydrolyzes it to D-galactose and D-mannose. When the disaccharide is treated with CH_3I and Ag_2O and then hydrolyzed with HCl, the products are 2,3,4,6-tetra-O-methylgalactose and 2,3,4-tri-O-methylmannose. Propose a structure for the disaccharide
Practice problem 4

Trehalose, $\text{C}_{12}\text{H}_{22}\text{O}_{11}$, …when hydrolyzed by acid or enzyme maltase forms only D-glucose. When treated with MeI and Ag$_2$O and then hydrolyzed with water under acidic conditions, only 2,3,4,6-tetra-O-methyl-D-glucose is formed.

a. draw the structure of trehalose

b. what is the function of silver (I) oxide? Answer: silver oxide serves as a base and as a strong binder to idodide, making it a better leaving group
Compounds A, B, and C are three different D-aldohexoses. Compounds A and B are reduced to enantiomeric alditols, but form diastereomeric aldopentoses after Wohl degradation. Compounds B and C form the same aldopentoses after Wohl degradation, but reduced to different alditols. Give the structures of A, B, and C.

Answer: A – B – C –
Practice problem 6 ("solution")

Solution: if A and B form enantiomeric alditols, they cannot be both derived from D-aldohexoses. In addition, if the alditols are enantiomeric, then aldopentoses after Wohl degradation must be enantiomeric as well. So the problem as stated does not have a solution.

However See next problem
Compounds A, B, and C are three different aldohexoses. Compounds A and B are reduced to identical alditol, but form enantiomeric aldopentoses after Wohl degradation. Compounds B and C form the same aldopentose after Wohl degradation, but reduced to different alditols. Give the structures of A, B, and C.

Solution on the next slide
Solution: If A and B form enantiomeric aldopentoses after Wohl degradation, then it must be a D/L pair of aldohexoses (enantiomers). The only way enantiomeric aldohexoses can form the same alditol is that if the alditol is achiral. Only sugars 1 and 7 form achiral alditols. Therefore, there will be 4 correct answers. An example of one is: A = D-galactose, B = L-galactose, C = L-talose.