

Chem 109 C

Fall 2014

Armen Zakarian Office: Chemistry Bldn 2217

CATALYSIS

PROBLEM 3

Are the slow steps here general-acid catalyzed or specific-acid catalyzed?

CATALYSIS

PROBLEM 4

The following reaction occurs by a general-acid catalyzed mechanism:

Propose a mechanism for this reaction

INTRAMOLECULAR CATALYSIS

- conformational analysis
- stereochemistry of products
- other examples of neighboring group participation

"intramolecular catalysis", "neighboring group participation", "anchimeric assistance" are interchangeable terms 4

intramolecular and intermolecular reactions why are intramolecular reactions faster?

"intramolecular catalysis", "neighboring group participation", "anchimeric assistance" are interchangeable terms 5

enzymes show high substrate specificity

names: [activity]-ase

kinase, protease, lipase, dehydrogenase, etc.

factors contributing to high catalytic activity of enzymes:

- reacting groups are properly oriented in active site
- acid/base or metal ions are at active site
- stabilization of transition states and intermediates

examples: carboxypeptidase A

examples: serine proteases - chymotrypsin

examples: serine proteases - chymotrypsin

examples: serine proteases - chymotrypsin

examples: glucose-6-phosphate isomerase

- specific-acid/specific-base catalysis
- general-acid/general-base catalysis
- nucleophilic catalysis
- metal-ion catalysis: three types of activation
- intramolecular reactions
- intramolecular catalysis/anchimeric assistance
- enzymes: substrate specificity

active site

Propose a mechanism for the following reaction

Why is this reaction slower with the following compound

summary of previous sections

Catalysis (ch 23)

definition of catalyst, energy diagrams illustrating catalytic action types of catalysis:

acid: specific and general base: specific and general nucleophilic: stronger Nu are better catalysts metal-ion: types of activation

intramolecular reactions why are they faster? effective molarity etc... intramolecular catalysis: examples of each class (acid, base, Nu, metal)

overview of enzyme catalyzed reactions: names of enzyme ("substrate"ase) lock-and-key model induced-fit model