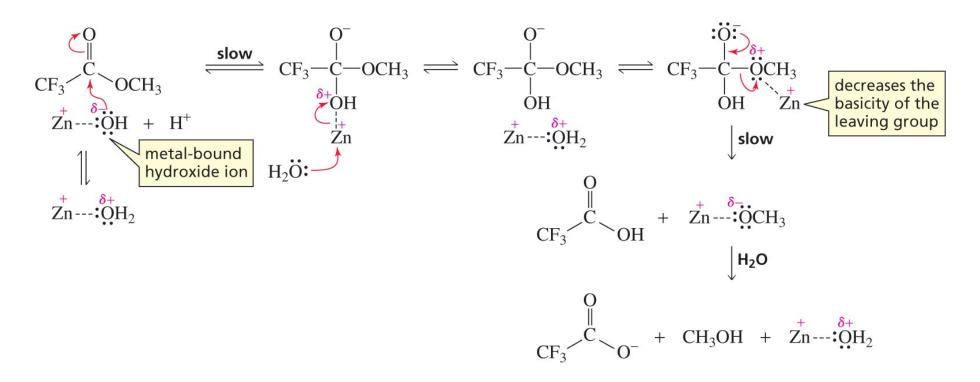

Chem 109 C Bioorganic Compounds

Armen Zakarian
Office: Chemistry Bldn 2217

http://labs.chem.ucsb.edu/~zakariangroup/courses.html

suggested additional exercise: fill in the blanks throughout these slides

catalysis through coordination of the metal ions to substrate



examples: decarboxylation

$$\begin{array}{c|cccc}
O & O & CH_3 & O \\
& \parallel & \parallel & \parallel & \parallel \\
-O - C - C - C - C - C - O^{-} & Cu^{2+} \text{ or } Al^{3+} \\
& CH_3
\end{array}$$

dimethyloxaloacetate

examples: hydrolysis

examples: hydrolysis

PROBLEM 8

The hydrolysis of glycinamide is catalyzed by Co²⁺, Propose a mechanism for this reaction

intramolecular and intermolecular reactions why are intramolecular reactions faster?

intramolecular reaction:

"intramolecular catalysis", "neighboring group participation", "anchimeric assistance" are interchangeable terms

INTRAMOLECULAR REACTIONS

reaction \sim number of collisions \times fraction with \times fraction with per unit time \times sufficient energy proper orientation

INTRAMOLECULAR REACTIONS

reaction
$$\sim$$
 number of collisions \times fraction with \times fraction with rate per unit time sufficient energy proper orientation

relative rate =
$$\frac{k_{\text{intramol}}}{k_{\text{intermol}}}$$
 = $\frac{\text{first order } k}{\text{second order } k}$ = $\frac{\text{s}^{-1}}{\text{s}^{-1} \, \text{M}^{-1}}$ = M effective molarity

Table 24.2 Relative Rates of an Intermolecular Reaction and Five Intramolecular Reactions	
Reaction	Relative rate
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0

Table 24.2 Relative Rates of an Intermolecular Reaction and Five Intramolecular Reactions		
Reaction	Relative rate	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \times 10^3 M$	

Table 24.2 Relative Rates of an Intermolecular Reaction and Five Intramolecular Reactions		
Reaction	Relative rate	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \times 10^3 M$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.3 \times 10^4 \text{M}$ R = CH ₃ $1.3 \times 10^6 \text{M}$ R = (CH ₃) ₂ CH	

Reaction	Relative rate
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \times 10^3 M$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.3 \times 10^4 \text{M}$ R = CH ₃ $1.3 \times 10^6 \text{M}$ R = (CH ₃) ₂ CH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.2 \times 10^{5} M$

Table 24.2 Relative Rates of an Intermolecular Reaction and Five Intramolecular Reactions Reaction	Relative rate
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \times 10^3 M$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.3 \times 10^4 \text{M}$ R = CH ₃ $1.3 \times 10^6 \text{M}$ R = (CH ₃) ₂ CH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.2 \times 10^{5} \mathrm{M}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \times 10^7 M$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5 \times 10^7 M$

"catalyst" is a part of the reacting molecule

intramolecular general base catalysis:

$$CH_{3}C - O \longrightarrow + H_{2}O \xrightarrow{\text{relative rate} = 1} CH_{3}CO^{-} + HO \longrightarrow CH_{3}CO^{-} + HO$$

"catalyst" is a part of the reacting molecule

intramolecular metal catalysis:

"catalyst" is a part of the reacting molecule

intramolecular <u>nucleophilic</u> catalysis:

- > why is this 70,000 times faster?
- what type of catalysis is this?

in more detail...

- conformational analysis
- stereochemistry of products
- other examples of neighboring group participation

"intramolecular catalysis", "neighboring group participation", "anchimeric assistance" are interchangeable terms