

Chem 109 C Bioorganic Compounds

Armen Zakarian Office: Chemistry Bldn 2217

http://labs.chem.ucsb.edu/~zakariangroup/courses.html

Chapter 22

- CATALYSIS
- INTRAMOLECULAR REACTIONS
- EXAMPLES WITH ENZYMES

Catalyst - a substance that

- 1. accelerates a reaction, and
- 2. is not changed or consumed

rate =
$$d[P]/dt = k[A][B]$$
 $k = Ae^{-E_a/RT}$

k = rate constant

note: the reaction still takes place without the catalyst, but is very slow

Draw energy diagrams to compare and classify catalyzed and uncatalyzed reactions:

Draw energy diagrams to compare and classify catalyzed and uncatalyzed reactions:

<u>note</u>: the reaction rate is the rate of the <u>slowest step</u>

Draw energy diagrams to compare and classify catalyzed and uncatalyzed reactions:

Draw energy diagrams to compare and classify catalyzed and uncatalyzed reactions:

Progress of the reaction

Draw energy diagrams to compare and classify catalyzed and uncatalyzed reactions:

Progress of the reaction

Problem 1

Which of the following parameters would be different for catalyzed vs uncatalyzed reaction (review Section 5.13)

$$\Delta G^{\circ}$$
, ΔH^{\ddagger} , E_{a} , ΔS^{\ddagger} , ΔH° , K_{eq}
 ΔG^{\ddagger} , ΔS° , k_{rate}

important fact: the reaction rate is the rate of the <u>slowest step</u>

Problem 1

Which of the following parameters would be different for catalyzed vs uncatalyzed reaction (review Section 5.13)

 ΔG° , ΔH^{\ddagger} , E_{a} , ΔS^{\ddagger} , ΔH° , K_{eq} ΔG^{\ddagger} , ΔS° , k_{rate}

important fact: the reaction rate is the rate of the slowest step

An Acid Catalyst Increases the Rate of a Reaction by Donating a Proton

How an Acid Catalyzes the "First Slow Step"

The catalyst increases the electrophilicity of the carbonyl carbon (makes it more susceptible to nucleophilic addition).

A catalyst must increase the rate of a slow step.

How an Acid Catalyzes "the Second Slow Step"

The catalyst decreases the basicity of the leaving group (increases its propensity to leave).

Types of catalysis we will be looking at:

- *acid catalysis* [specific, general]
- **base catalysis** [specific, general]
- nucleophilic catalysis
- metal-ion catalysis

ACID CATALYSIS

Two types of acid catalysis:

1. <u>specific</u>: first protonation, then slow step

ACID CATALYSIS

Two types of acid catalysis:

2. <u>general</u>: protonation and slow step at the same time

PROBLEM 3

Are the slow steps here general-acid catalyzed or specific-acid catalyzed?

BASE CATALYSIS

Again, two types of base catalysis:

1. <u>specific</u>: first deprotonation, then slow step

BASE CATALYSIS

Again, two types of base catalysis:

2. <u>general</u>: **de**protonation and slow step at the same time

PROBLEM 6

PROBLEM 4

The following reaction occurs by a general-acid catalyzed mechanism:

Propose a mechanism for this reaction

NUCLEOPHILIC CATALYSIS

the catalyst is a nucleophile

Draw the mechanism [catalyzed and uncatalyzed]:

NUCLEOPHILIC CATALYSIS

Draw the mechanism [catalyzed and uncatalyzed]:

the catalyst is a nucleophile

PRACTICE PROBLEM

Draw an approximate energy diagram for the above reaction and its uncatalyzed version