

Chem 109 C Bioorganic Compounds

Armen Zakarian Office: Chemistry Bldn 2217

http://labs.chem.ucsb.edu/~zakariangroup/courses.html

Primary structure is the sequence of amino acids in a protein and the location of disulfide bridges

strategy for determining the primary structure:

- 1. break down peptide into individual amino acids to determine <u>composition</u>
- 2. use selective reagents to determine <u>sequence</u>

first steps - overall composition:

cleaving disulfide bridges: HSCH₂CH₂OH

first steps - overall composition:

cleaving disulfide bridges: HSCH₂CH₂OH

Copyright © 2007 Pearson Prentice Hall, Inc.

Effluent (mL)

first steps - overall composition:

cleaving disulfide bridges: HSCH₂CH₂OH

selective reagents to break amide bonds:

for N-terminal amino acid

Edman's reagent:

phenyl isothiocyanate

PTH-amino acid

from N-terminal amino acid

can be repeated up to 50 times in sequencer

selective reagents to break amide bonds:

partial hydrolysis with dilute acid into smaller pieces

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His

Sequencing an oligopeptide...

PRACTICE PROBLEM

A decapeptide undergoes partial hydrolysis to give peptides whose amino acid compositions are shown. Reaction of the intact decapeptide with Edman's reagent releases PTH-Gly. What is the sequence of the decapeptide?

1. Ala, Trp3. Pro, Val5. Trp, Ala, Arg7. Glu, Ala, Leu2. Val, Pro, Asp4. Ala, Glu6. Arg, Gly8. Met, Pro, Leu, Glu

Sequencing an oligopeptide...

PRACTICE PROBLEM

A decapeptide undergoes partial hydrolysis to give peptides whose amino acid compositions are shown. Reaction of the intact decapeptide with Edman's reagent releases PTH-Gly. What is the sequence of the decapeptide?

1. Ala, Trp3. Pro, Val5. Trp, Ala, Arg7. Glu, Ala, Leu2. Val, Pro, Asp4. Ala, Glu6. Arg, Gly8. Met, Pro, Leu, Glu

Midterm 1

Wednesday, October 16, HFH 1104, 8 – 8:50 am

• Chapter 20. Carbohydrates.

All Sections except 20.13, 20.17, 20.19

• Chapter 21. Amino acids, Proteins.

All sections Up to 21.11, including 21.11

structures of carbohydrates (except glucose, mannose, and galactose) and amino acids will be provided

PRACTICE PROBLEM

Name the following monosaccharide and draw a Fischer projection for the open form

selective reagents to break amide bonds:

for C-terminal amino acid: <u>exopeptidases</u>: carboxypeptidase A: all but Arg and Lys carboxypeptidase B: <u>only</u> Arg and Lys

selective reagents to break amide bonds:

partial hydrolysis with endopeptidases:

Trypsin: C-side of Arg and Lys

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His cleavage by trypsin

selective reagents to break amide bonds:

partial hydrolysis with endopeptidases:

Trypsin: C-side of Arg and Lys

selective reagents to break amide bonds:

partial hydrolysis with endopeptidases:

Trypsin: C-side of Arg and Lys

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His

cleavage by trypsin

Chymotrypsin: C-side of Phe, Tyr and Trp

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His cleavage by chymotrypsin

selective reagents to break amide bonds:

partial hydrolysis with endopeptidases:

Trypsin: C-side of Arg and Lys

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His

cleavage by trypsin

Chymotrypsin: C-side of Phe, Tyr and Trp

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His cleavage by chymotrypsin

Elastase: C-side of Gly and Ala

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His cleavage by elastase

selective reagents to break amide bonds:

for endo- and exopeptidases, no reaction at Pro:

selective reagents to break amide bonds:

cyanogen bromide: BrCN,

C-side of Met

Ala-Lys-Phe-Gly-Asp-Trp-Ser-Arg-Met-Val-Arg-Tyr-Leu-His

BrCN will cleave next to proline (Pro)

Table 21.4 Specificity of Peptide or Protein Cleavage	
Specificity	
removes the N-terminal amino acid	
hydrolyzes on the C-side of Met	
removes the C-terminal amino acid (not Arg or Lys)	
removes the C-terminal amino acid (only Arg or Lys)	
hydrolyzes on the C-side of Arg and Lys	
hydrolyzes on the C-side of amino acids that contain aromatic six-membered rings (Phe, Tyr, Trp)	
hydrolyzes on the C-side of small amino acids (Gly and Ala)	

* Cleavage will not occur if Pro is on either side of the bond to be hydrolyzed.

Primary structure is the sequence of amino acids in a protein and the location of disulfide bridges

obtained from sequencing a protein

<u>Secondary structure</u> describes the common conformations of

segments of a protein

three types:

Proteins: Secondary Structure

α-Helix

one turn: 3.6 aa, 5.4 Å repeat distance

Proteins: Secondary Structure

β -Pleated Sheet

average two residue repeat distance is 7.0 Å

Proteins: Secondary Structure

Coils or Loops

<u>Tertiary structure</u> describes the 3D arrangement of all the atoms in the protein

Proteins: Tertiary Structure

Tertiary structure describes the 3D arrangement of all

the atoms in the protein

<u>Quaternary structure</u> aggregates of proteins: each is called a subunit

Quaternary structure aggregates of proteins: each is

called a subunit

hemoglobin

mutation at position 6: glutamate \rightarrow valine: sickle cell anemia

Proteins: Quaternary Structure

nicotinic acetylcholine receptor (nAChR) **<u>Protein denaturation</u>**: is destruction of the highly organized tertiary structure, results in [irreversible] loss of function

factors that can cause denaturation:

- changing acidity (pH)
- temperature
- some reagents (urea, guanidine)
- detergents
- organic solvents

Protein Structure and Analysis

structure: primary, secondary, tertiary, quaternary parameters of alpha-helix, beta sheet, loops/coils and tertiary structures

structure determination, reagents: HSCH₂CH₂OH 6M HCI

> Edman's reagent cyanogen bromide BrCN

exopeptidases: carboxypeptidase A carboxypeptidase B

endopeptidases:

trypsin chymotripsin elastase

PROBLEM 48

Determine the primary structure of an octapeptide from the following data:

- -acid-catalyzed hydrolysis gives 2 Arg, Leu, Lys, Met, Phe, Ser, and Tyr
- -carboxypeptidase A releases Ser
- -Edman's reagent releases Leu
- -BrCN forms two peptides with the following composition:
- 1. Arg, Phe, Ser and 2. Arg, Leu, Lys, Met, Tyr

-trypsin-catalyzed hydrolysis forms the following two amino acids and two peptides:

1. Arg 2. Ser 3. Arg, Met, Phe 4. Leu, Lys, Tyr