

Chem 109 C Bioorganic Compounds

Armen Zakarian
Office: Chemistry Bldn 2217

http://labs.chem.ucsb.edu/~zakariangroup/courses.html

Amino acids, Peptides, Proteins: Introduction

Chapter 21

 α -amino acid

$$R \rightarrow OH + H_2N-R \rightarrow R \rightarrow N_R$$

Peptide bond = amide bond

Proteins: Function

Table 21.1	Examples of the Many Functions of Proteins in Biological Systems
------------	--

Structural proteins These proteins impart strength to biological

structures or protect organisms from their environment. For example, collagen is the major component of bones, muscles, and tendons; keratin is the major component of hair, hooves, feathers, fur, and the outer

layer of skin.

Protective proteins Snake venoms and plant toxins protect their

owners from predators. Blood-clotting proteins protect the vascular system when it is injured. Antibodies and peptide antibiotics protect us

from disease.

Enzymes are proteins that catalyze the reactions

that occur in living systems.

Hormones Some of the hormones, such as insulin, that

regulate the reactions that occur in living

systems are proteins.

Proteins with physiological functions These proteins are responsible for physiological

functions such as the transport and storage of oxygen in the body, the storage of oxygen in the

muscles, and the contraction of muscles.

Proteins: Structural

Histone Protein Structure: **DNA** packaging

Proteins: Protective

botulinum toxin (botox) structure most toxic substance known $LD_{50} = 10 \text{ ng/kg}$

Amino acids, Peptides, Proteins: Introduction

- √ oligopeptide: 3 10 amino acids
- **✓** polypeptide, or protein: many amino acids

Proteins: Amino Acids, Configuration

natural amino acids

- Hydrophobic: "water-fearing", nonpolar side chains
 - Alkyl side chain
- Hydrophilic: "water-loving" side chains
 - Polar, neutral side chains
 - Anionic
 - Cationic
- Table 21.1 lists 20 most common natural occurring amino acids
- The structures of amino acids will be provided on the tests

$$H_3N$$
— CH — CH — CH — CH 2

 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3

ĊH₃

Methionine

Leucine

Phenylalanine

nonpolar side chains

polar
neutral
(uncharged)
side chains

$$\begin{array}{c} O \\ H_3N \longrightarrow CH-C \longrightarrow O \\ CH_2 \\ C \longrightarrow O \\ O \bigcirc \end{array}$$

$$\begin{array}{c}
\bullet \\
H_3N - CH - C - O \\
CH_2 \\
C = O \\
O \ominus
\end{array}$$

$$\begin{array}{c}
\bullet \\
CH_2 \\
CH_2 \\
C = O \\
O \ominus
\end{array}$$

$$\begin{array}{c}
\bullet \\
CH_2 \\
C = O \\
O \ominus
\end{array}$$
Asparatic Acid

Glutamic Acid

polar acidic (anionic) side chains

polar basic (cationic) side chains

PROBLEM 1

Explain why when the imidazole ring of histidine is protonated, the double-bonded nitrogen is the nitrogen atom that accepts the proton.

same for guanidine group in arginine.

√ contain the amino group

√ contain the carboxylic acid group:

pK_a of amino acids:

$$_{\text{HO}_2\text{C}}^{\text{NH}_2}$$
 \(\text{NH}_2\) \(\text{R}\) \(\alpha\)-amino: 8.84 - 10.60

 pK_a of the α -amino group is 9

pK_a of the CO₂H group is 2

pKa of side-chains:

HO NH₂ OH

HO NH₂ N

HO NH₂ SH

aspartic acid

glutamic acid

histidine

cysteine

pKa 3.86

pKa 4.25

pKa 6.04

pKa 8.35

tyrosine

pKa 10.07

lysine

pKa 10.79

$$HO \bigvee_{O} \begin{matrix} NH_2 \\ N \\ NH_2 \end{matrix}$$

arginine

pKa 12.48

OHOME CH2CH OF CH2CH OF CH2CH OF CH2CH OF CH2CH OF CH2CH OF PH = 0
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

PROBLEM 8

Draw the predominant form of glutamic acid in a solution with the following pH:

- a. 0
- **b**. 3
- c. 6

d. 11

glutamic acid

PROBLEM 8

Draw the predominant form of glutamic acid in a solution with the following pH:

- a. 0
- b. 3
- c. 6
- d. 11

glutamic acid

Amino acids: Isoelectric Point (pl)

pl of amino acid is pH at which it has no net charge

case 1: non-ionizing side chain

Amino acids: Isoelectric Point (pl)

pl of amino acid is pH at which it has no net charge

case 2: ionizable side chain (acidic or basic) average of pKa's of similarly ionizing groups

Amino acids: Isoelectric Point (pl)

PROBLEM 6

Why are the carboxylic groups of the amino acids more acidic $(pK_a \sim 2)$ than in acetic acid $(pK_a 4.76)$?

d electrophoresis

based on pl values of amino acids

visualized with ninhydrin:

arginine, alanine, and aspartate separated at pH = 5

paper/thin layer chromatography based on polarity

visualized with ninhydrin:

glutamate, alanine, and leucine

ion-exchange chromatography

based on ions/charge - (or diff between pl and pH) used on preparative scale, automated

packed with insoluble resin beads

Ion-exchange chromatography can be used to perform preparative separation of amino acids:

Negatively charged resin binds selectively to positively charged amino acids

ion-exchange chromatography

A typical chromatogram obtained from separation of amino acids using an automated analyzer

Amino acid synthesis: HVZ reaction

Hell-Volhardt-Zelinski reaction, see Sections 17.5 and 9.2

note the source of side-chains....

Amino acid synthesis: reductive amination

review Section 16.4

intermediate

note the source of side-chains....

Amino acid synthesis: M-phthalimidomalonic

$$\underbrace{\mathsf{EtO} \overset{\bullet}{\longleftarrow} \mathsf{OEt} }_{\mathsf{Br}} \overset{\bullet}{\longleftarrow} \mathsf{OEt}$$

$$\underbrace{\mathsf{EtO} \overset{\bullet}{\longleftarrow} \mathsf{N}^{-} \mathsf{K}^{+}}_{\mathsf{OEt}} \overset{\bullet}{\longrightarrow} \mathsf{Det}$$

$$\underbrace{\mathsf{EtO} \overset{\bullet}{\longleftarrow} \mathsf{OEt} }_{\mathsf{O}} \overset{\bullet}{\longrightarrow} \mathsf{Det}$$

$$\underbrace{\mathsf{Ca-bromomalonic ester} }_{\mathsf{Det}} \mathsf{Det} \overset{\bullet}{\longrightarrow} \mathsf{Det}$$

N-phthalimidomalonic ester

review Sections 15.4, 17.1, and 17.17

Amino acid synthesis: Strecker synthesis