

Chem 109 C Bioorganic Compounds

Armen Zakarian
Office: Chemistry Bldn 2217

http://labs.chem.ucsb.edu/~zakariangroup/courses.html

Chapter 23: Coenzymes

Overview and Introduction:

- enzymes are biological catalysts
- many enzymes are inactive without cofactors
- cofactors are 1) metal ions or 2) coenzymes
- coenzymes - organic molecules, derived from vitamins

Chapter 23: Coenzymes

Coenzyme	Vitamin	Reaction catalyzed
NAD ${ }^{+}$, NADP ${ }^{+}$/ NADH, NADPH	niacin, nicotinamide	oxidation/reduction of alcohols
FAD / FADH ${ }_{2}$	riboflavin (B2)	oxidation/reduction, other
Thiamine pyrophosphate TPP	thiamine (B1)	acyl group transfer
Lipoic acid /dihydropipoic acid	lipoic acid	oxidation/reduction
Coenzyme A, CoASH	pantothenic acid (B5)	acyl group transfer
Biotin	biotin (B7)	carboxylation
Pyridoxal phosphate PLP	pyridoxin (B6)	6 amino acid reactions
Coenzyme B_{12}	vitamin B12	isomerization
Tetrahydrofolic acid, THF	folic acid	one-carbon transfer
Vitamin KH_{2}	vitamin K	carboxylation

Chapter 23: Coenzymes

factors characterizing a coenzyme:

- chemical structure
- associated vitamin
- type of reaction catalyzed
- reaction mechanism
- dietary source
- associated disease

NAD+-NADH, NADP+ ${ }^{+}$-NADPH

NAD ${ }^{+}$

NADHNAD^{+}is a catabolic enzyme [NAD $\left.{ }^{+}\right] /[$NADH] ~ $1000: 1$ (cytosol) [0.3 mM]

- catalyze redox (oxidation-reduction) reactions
- source of nicotinamide: meats, vegetables, peanuts etc.
- deficiency disease: pellagra (skin lesions, sensitivity to light etc.)

NAD+-NADH, NADP+ ${ }^{+}$-NADPH

NADP ${ }^{+}$

NADPH

- NADP ${ }^{+}$is an anabolic enzyme[NADP+]/[NADPH] ~ 1 : 100
- catalyze redox (oxidation-reduction) reactions
- source of nicotinamide: meats, vegetables, peanuts etc.
- deficiency disease: pellagra (skin lesions, sensitivity to light etc.)

NAD+ ${ }^{+}$NADP+

Oxidation with NAD+ (or NADP ${ }^{+}$):

General mechanism of oxidation:

$\mathbf{N A D}^{+}$, NADP ${ }^{+}$

Oxidation with NAD^{+}(or NADP ${ }^{+}$), examples:

- important reaction in the citric acid cycle

NAD $^{+}$, NADP $^{+}$

Reduction with NADH (or NADPH), a reverse process:

General mechanism of reduction:

- NADH and NADPH are H^{-}donors

NAD+ ${ }^{+}$NADP+

Reduction with NADPH (or NADH), examples:

β-aspartate semialdehyde

homoserine

- important reaction in an anabolic pathway

NAD $^{+}$, NADP $^{+}$

Oxidation - a more complex example:

G3P

D-glyceraldehyde-3-phosphate
D-1,3-diphosphoglycerate

D-glyceraldehyde-3-phosphate
D-1,3-diphosphoglycerate

Stereochemistry of enzymatic reactions: enzyme reactions are stereospecific

