Persistent Radicals in Total Synthesis

Brad Reid
Zakarian Group
University of California, Santa Barbara
1 November 2018

Overview

Introduction to carbon-centered radical chemistry

Terminology and history pertinent to understanding

Persistent radical effect

Kinetic reasoning for why hetero-coupling is major product

Specific examples of modern use of radicals in total synthesis

Examples contain a key step where persistent or stabilized radicals are important for selectivity

Gomberg's Triphenylmethyl Radical

- Discovered during failed Wurtz coupling
- First example of isolation of a radical intermediate
- In the presence of oxygen a peroxide is readily formed
- In the absence of oxygen this radical can persist for several days

Radical Stabilization

BDE
$$\left(\begin{array}{c} H \\ \end{array}\right)$$
 - BDE $\left(\begin{array}{c} H \\ \end{array}\right)$ = RSE

98 kcal/mol - 85 kcal/mol = 13 kcal/mol (RSE)

BDE
$$\left(\begin{array}{c} H \\ CH_3 \end{array}\right)$$
 -BDE $\left(\begin{array}{c} \\ \end{array}\right)$ = RSE

104 kcal/mol - 93 kcal/mol = 11 kcal/mol (RSE)

- Radicals are stabilized by overlap of the SOMO with adjacent Pi orbitals
- Radicals are stabilized, to a lesser extent, by hyperconjugation or orbital overlap with adjacent C-H and C-C bonds
- The extent to which a radical is stabilized can be estimated by radical stabilization energy (RSE)
- These are thermodynamic qualities inherent to the electronic structure of the molecule

RSE = BDE(C - H bond of unstabilized structure)-BDE(C - H bond of stabilized structure)

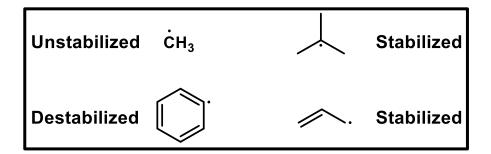
Stable Radicals

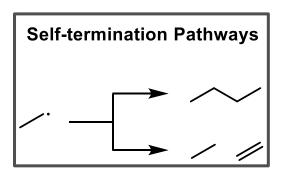
(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation catalyst, polymerization mediator

 The word "stable" should only be used to describe species which can be isolated and treated like a common reagent.

$$\begin{array}{c|c}
O_2N \\
N \\
O_2N
\end{array}$$

$$\begin{array}{c|c}
O_2N \\
\end{array}$$


2,2-diphenyl-1-picrylhydrazyl

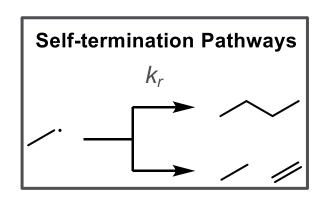

hydrogen acceptor, measurement of anti-oxidant activity of other compounds

 Radicals are typically unstable species and there are very few examples of radicals that fit the above definition

UCSB

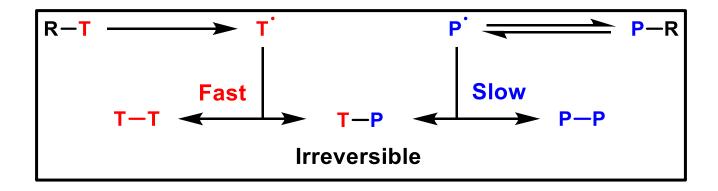
Transient Radicals

- Undergo bimolecular self-reactions at rates similar to methyl radical
- Immediately terminate
- Difficult to observe in solution


Persistent Radicals

- Lifetime is considerably longer than the methyl radical
- Dimerization tends to be slow and reversible
- Observable in solution
- Steric bulk is the primary factor in determination of persistence

Kinetic and Thermodynamic Character of Radicals


Radical	$k_r (M^{-1} s^{-1})$	$t_{1/2}(s)$	RSE (kcal/mol)
ĊН ₃	1.1 x 10 ¹⁰	9.1 x 10 ⁻⁶	0.0
/ .	8.5 x 10 ⁹	1.2 x 10 ⁻⁵	10
	2.3 x 10 ⁹	4.3 x 10 ⁻⁵	13
	8.1 x 10 ⁹	1.2 x 10 ⁻⁵	11
*	2 x 10 ²	5.0 x 10 ²	9
	n/a	days	11

[radical] = $1 \times 10^{-5} \text{ M}$

Persistent Radical Effect

- Transient and persistent radicals must be formed at nearly the same rate
- Transient radical is short lived and rate of termination is fast
- This causes a build-up of persistent radical
- The cross-product is the major product

Bachmann's Observation of Persistent Radical Effect

- In the presence of oxygen and hydrogen source, peroxides form
- In absence of oxygen, dimerization of diphenylmethane occurs
- This causes a build-up of persistent radical triphenylmethyl radical
- Solution takes on the color of triphenylmethyl radical and shifts equilibrium to pentaphenylethane

Methods of Generating Carbon-centered Radical

"Tin Hydride Method"

Fragmentation Method

$$NC$$
 $N > N$ CN

azobisisobutyronitrile AIBN

benzoyl peroxide

triethylborane/O₂

Curran's Synthesis of Hirsutene

Song's Synthesis of Lasonolide A

$$= R = COOEt$$
OBn
$$= R = COOEt$$
OBn
$$= R = COOEt$$

Pattenden's Synthesis of (±)-oestrone

Theodorakis' Synthesis of (-)-Fusarisetin

Theodorakis' Synthesis of (-)-Fusarisetin (mechanism)

Stork's Synthesis of (+)-prostaglandin $F_{2\alpha}$

TMS
$$C_5H_{11}$$

$$OEt$$

$$Bu_3SnCI$$

$$NaBH_3CN$$

$$h$$

$$TBSO$$

$$TBSO$$

$$TMS$$

$$TM$$

1. (S)-BINAL-H
2. HCI, H₂O/THF (+)-prostaglandin F₂
3. KO*t*-Bu

HO

Ph₃P

HO

O

ΗÕ

54% yield over 3 steps

ΗÕ

Overman's Synthesis of Cheloviolene A

(+)-Cheloviolene A

Overman's Synthesis of Cheloviolene A (mechanism)

Inoue's Synthesis of Resiniferatoxin

Inoue's Synthesis of Resiniferatoxin (mechanism)

$$\begin{array}{c} \mathsf{CP}_2\mathsf{FePF}_6 \\ \mathsf{THF}, 0\,\,{}^{\circ}\mathsf{C} \end{array}$$

95% yield, 3:4, *dl:meso*

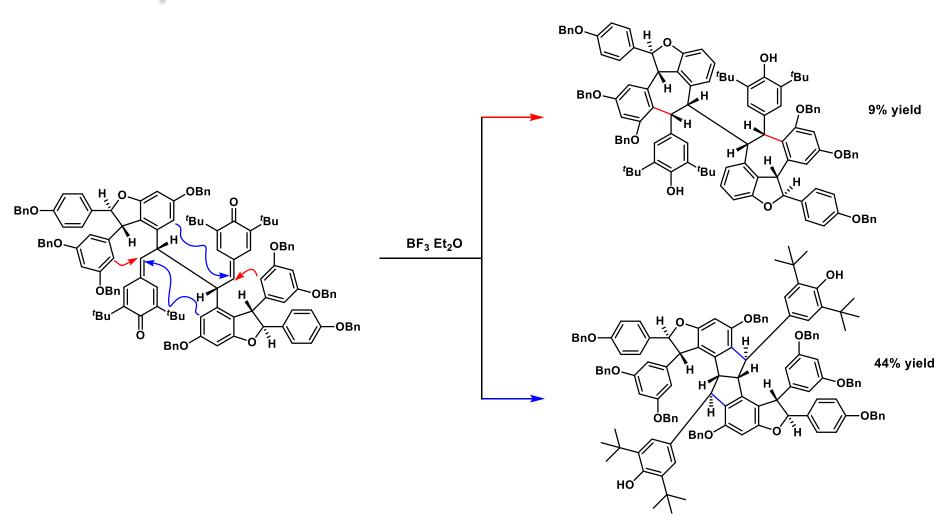
$$K_r = 6.9 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$$
 $t_{1/2} = 1.5 \times 10^{-3} \text{ s}$
persistent!

1:1:2 mixture

C. R. J. Stephenson, D. A. Pratt, et. al., *Angew. Chem. Int. Ed.* 2015, **54**, 3754 –3757 C. R. J. Stephenson, D. A. Pratt, et. al., *Science*, 2016, **354**, 1260–1265

76% over 2 steps

quadrangularin A 73% yield



Stephenson's Synthesis of Viniferin Dimers (Resveratrol Tetramers)

97% yield, 19:1 dr

Stephenson's Synthesis of Viniferin Dimers (Resveratrol Tetramers)

Stephenson's Synthesis of Viniferin Dimers (Resveratrol Tetramers)

Summary

 Basic tutorial on kinetic and thermodynamic parameters relating to reactivity of carbon-centered radicals

 Introduce persistent radicals and how they lead to selectivity in total synthesis

 Shared some examples of total syntheses where a persistent and/or stabilized radical was an important feature