Chapter 1

Review of General Chemistry:
Electronic Structure and Bonding

What is Organic Chemistry?

Organic compounds: from living organisms

Inorganic compounds: from minerals

[Chemical reaction image]

ammonium cyanate an inorganic mineral

heat

urea an “organic” compound

Organic compounds are compounds that contain carbon.
Isotopes

Isotopes: atoms of the same element with different mass

All Carbon Atoms Have the Same **Atomic Number** = # of protons

Carbon Atoms Can Have the Different **Mass Numbers**

\[\text{Mass Number} = \text{# of protons} + \text{# of neutrons} \]

The Structure of an Atom

Protons are *positively* charged.

Neutrons have *no* charge.

Electrons are *negatively* charged.
The Structure of an Atom

- **Protons** are positively charged.
- Neutrons have no charge.
- **Electrons** are negatively charged.

\[
N, \text{ atomic number} = \# \text{ of protons} \\
N \text{ for carbon} = 6
\]

- carbon atom has **six protons** and **six electrons**.

The Distribution of Electrons in an Atom

<table>
<thead>
<tr>
<th>Table 1.1 Distribution of Electrons in the First Four Shells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic orbitals</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Number of</td>
</tr>
<tr>
<td>atomic orbitals</td>
</tr>
<tr>
<td>Maximum number of</td>
</tr>
<tr>
<td>electrons</td>
</tr>
</tbody>
</table>

- The **first** shell is closest to the nucleus.
- The **closer** the atomic orbital is to the nucleus, the **lower** its energy.
- Within a shell, **s < p**.
Aufbau principle: An electron goes into the atomic orbital with the lowest energy.
\[1s < 2s < 2p < 3s < 3p < 3d \]

Pauli exclusion principle: No more than two electrons can be in an atomic orbital.

Hund’s rule: An electron goes into an empty degenerate orbital rather than pairing up.

Atoms in the First Column of the Periodic Table Lose an Electron

An atom is most stable if its outer shell is either filled or contains 8 electrons.

Lithium and sodium achieve a filled outer shell by losing an electron.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Name of element</th>
<th>Atomic number</th>
<th>1s</th>
<th>2s</th>
<th>2p$_x$</th>
<th>2p$_y$</th>
<th>2p$_z$</th>
<th>3s</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hydrogen</td>
<td>1</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>Helium</td>
<td>2</td>
<td>↑↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
<td>3</td>
<td>↑↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td>Beryllium</td>
<td>4</td>
<td>↑↓</td>
<td>↑↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Boron</td>
<td>5</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
<td>6</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
<td>7</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Oxygen</td>
<td>8</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Fluorine</td>
<td>9</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>Neon</td>
<td>10</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
<td>11</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
</tbody>
</table>

Li[*] lithium has 1 valence electron... → e\(^-\)... so it loses an electron... to form a ion with a filled outer shell

Li⁺ lithium ion

Na[*] sodium atom → e\(^-\) + Na⁺ sodium ion
Atoms on the Right Side of the Periodic Table Readily Gain an Electron

Fluorine and chlorine achieve a filled outer shell by gaining an electron.

- Fluorine has 7 valance electrons... so it gains an electron... to form an ion with a filled outer shell
 \[\text{fluorine atom} + e^- \rightarrow \text{fluoride ion} \]

- Chlorine atom
 \[\text{chlorine atom} + e^- \rightarrow \text{chloride ion} \]

A Hydrogen Atom Can Lose or Gain an Electron

A hydrogen atom achieves an empty shell by losing an electron or a filled outer shell by gaining an electron.
Achieving a Filled Outer Shell by Sharing Electrons

A bond formed by sharing electrons is called a covalent bond.

Each fluorine shares 1 of its 7 valence electrons... ...to form a covalent bond... which can be denoted by a solid line.

\[
\begin{align*}
\text{F}^+ & \quad + \quad \text{F}^- \\
\rightarrow & \\
\text{F}^\cdots & \quad \text{F}^- \\
\end{align*}
\]

Each fluorine is surrounded by 8 electrons.

Each hydrogen shares its valence electron... ...to form a covalent bond.

\[
\begin{align*}
\text{H}^+ & \quad + \quad \text{H}^- \\
\rightarrow & \\
\text{H}^\cdots & \quad \text{H}^- \\
\end{align*}
\]

Each hydrogen is surrounded by 2 electrons.

Achieving a Filled Outer Shell by Sharing Electrons

\[
\begin{align*}
\text{H}^+ & \quad + \quad \text{Cl}^- \\
\rightarrow & \\
\text{H}^\cdots & \quad \text{Cl}^- \\
\end{align*}
\]

H is surrounded by 2 electrons.
Cl is surrounded by 8 electrons.
How Many Bonds Does an Atom Form?

Nonpolar and Polar Covalent Bonds

Nonpolar covalent bond = bonded atoms are the same or have similar electronegativities.

$$\begin{align*}
\text{H—H} & \quad \text{F—F} & \quad \text{C—C} & \quad \text{C—H}\\
\text{H—:\text{Cl}^+:} & \quad \text{H—:\text{O}^+:} & \quad \text{H—:\text{N}^-} & \quad \text{H—:\text{C}^-}\\
\end{align*}$$

Polar covalent bond = bonded atoms have different electronegativities.

$$\begin{align*}
\text{H—:\text{Cl}^+:} & \quad \delta^+ \quad \text{H—:\text{O}^+:} & \quad \delta^+ \quad \text{H—:\text{N}^-} & \quad \delta^+ \quad \text{H—:\text{C}^-} & \quad \delta^+ \\
\end{align*}$$

The negative end of the bond

Notice that each O, N, C is surrounded by 8 electrons, and each H is surrounded by 2 electrons.