HYDROGEN CYANO FULLERENE CONTAINING PROTON CONDUCTING MEMBRANES

Inventors: Fred Wudl, Santa Barbara, CA (US); Galen D. Stucky, Santa Barbara, CA (US); Hengbin Wang, Los Angeles, CA (US); Bruno Jousselmie, Antibes (FR); Ken Tasaki, Goleta, CA (US); Arunkumar Venkatesan, Santa Barbara, CA (US)

Assignee: The Regents of the University of California, Oakland, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 688 days.

Appl. No.: 11/067,599
Filed: Feb. 25, 2005

Prior Publication Data
US 2006/0191842 A1 Aug. 31, 2006

Int. Cl.
B01J 20/20 (2006.01)

U.S. CL. 428/368; 429/251; 977/779; 502/4

Field of Classification Search 428/368; 429/251; 502/4; 977/779
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
5,648,523 A 7/1997 Chiang

OTHER PUBLICATIONS
* cited by examiner

Primary Examiner—Stuart Hendrickson
Attorney, Agent, or Firm—James M. Ritchey

ABSTRACT
The components of and a proton conducting membrane (PCM) produced from a host polymer and an attached or physically blended in hydrogen cyano fullerene proton-source agent, with the physical blending of the host polymer and hydrogen cyano fullerene further promoted by a poly (ethylene oxide) attached fullerene mixing agent.

7 Claims, 13 Drawing Sheets
FIGURE 1

C₆₀H(CN)

C₆₀H(CN)₃
Multiple PEOC₆₀ or C₆₀(CH₂C₆H₄O(CH₂CH₂O)ₙCH₃)ₘ
8 equiv. \[\text{CuBr/bipy (x:2x)} \]

ODCB, 60-120°C

FIGURE 5
\[
\text{CH}_3(\text{OCH}_2\text{CH}_2)_n\text{OH} \xrightarrow{\text{SOCl}_2 \ (1.5 \text{ equiv.})} \text{CH}_3(\text{OCH}_2\text{CH}_2)_n\text{Cl} \quad \text{reflux in toluene, 80-90\%} \\
\]

\[
\text{CH}_3(\text{OCH}_2\text{CH}_2)_n\text{N}_3 \xrightarrow{\text{C}_6\text{O} \ (1 \text{ equiv.})} \text{C}_6\text{O}-\text{A(PEO}_n\text{)} \quad \text{reflux in chlorobenzene} \\
\]

\[
\text{NaN}_3, \text{ Bu}_4\text{N} \quad \text{70 °C in DMF, 80-90\%} \\
\]

4, (solids) 3-6\%

\[
\text{C}_6\text{O}-\text{A(PEO}_n\text{)} \quad \text{(n ~ 8,11,16,45)} \\
\]

5, (oil or solids) 25-35\%

FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 11

A

g-value = 2.0025

B
FIGURE 13
HYDROGEN CYANO FULLERENE CONTAINING PROTON CONDUCTING MEMBRANES

CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

Not Applicable

NOTICE OF MATERIAL SUBJECT TO COPYRIGHT PROTECTION

A portion of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The owner of the copyright rights has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office publicly available file or records, but otherwise reserves all copyright rights whatsoever. The copyright owner does not hereby waive any of its rights to have this patent document maintained in secrecy, including without limitation its rights pursuant to 37 C.F.R. §1.14.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention pertains generally to novel proton conducting membranes (PCMs) and the components utilized to produce these PCMs. More particularly, the subject invention relates to novel PCMs and their constituent components comprising hydrogen cyano fullerenes (HC$_{60}$(CN)$_2$) as a proton-source agent and often poly(ethylene oxide) attached fullerene (C$_{60}$(PEO)$_3$) as mixing agents to facilitate PCM formation with a host polymer.

2. Description of Related Art

The subject invention is utilized as a major component of a polymer electrolyte fuel cell (PEFC). PEFCs are generally comprised of three major components: the anode, the proton conducting membrane (PCM, the subject invention area); and the cathode. The PCM plays a critical role of transporting a proton from the anode to the cathode. It has to be highly proton conductive and also mechanically, thermally, and chemically stable. Water is produced at the interface between the cathode and the membrane. This water can be problematic, as discussed below, in operation of a PEFC. Lack of suitable membrane availability has been hindering the commercialization of PEFC. Water management is one of the most difficult issues in operating a PEFC. The water in the PEFC is produced as a product at the cathode side in PEFC. A breakdown in water balance between production and loss of water at the cathode side often results in water flood, while the anode interface with the membrane may suffer from water depletion due to water transportation toward the cathode side. Both the flood and the depletion may increase the cell overpotential which results in loss of power. Furthermore, the most commonly used PCMs are based on sulfonated perfluoropolymers that need to be fully humidified to be functional during the operation of the PEFC. Thus, these sulfonated perfluoropolymers not only require a humidifier, but also need an even distribution of water across the membrane which becomes an additional concern because of the membrane’s high dependence on water.

Dry operation of PEFC may alleviate some of the water management problems. In fact, there is a strong demand in the auto industry as well as the distributed power generation industry for PEFC functional under low relative humidity (RH) (<50% RH). [Mathias, M.; Gasteiger, H.; Makharia, R.; Kocha, S.; Fuller, T.; Xie, T.; Pisco, J. Preprints of Symposia—American Chemical Society, Division of Fuel Chemistry 2004, 49(2), 471-474] Currently, no commercially available PCM meets this demand. NAFION, the industrial standard PCM by DuPont, is widely used in PEFC; yet it is sensitive to humidity, a very undesirable characteristic. Other existing proton conducting membranes, commercially available or under development, are as good or even better than NAFION under fully humidified condition, but very few outperform NAFION under low humidity conditions.

One existing PCM is disulfonated poly(arylene ether sulfone) copolymer (BPSH) developed by McGrath and coworkers. [Wang, F.; Hickner, M.; Kim, Y. S.; Zawadowski, T. A.; McGrath, J. E., J. Membr. Sci. 2002, 197, 231] Though BPSH is thermally stable and mechanically durable, and widely used as one of the most advanced alternative PCM, its proton conductivity under low RH (<80%) is lower than that of NAFION. Lack of membranes capable of functioning under low RH, (i.e., maintaining high conductivity, ~10$^{-1}$ S cm$^{-1}$) has been an obstacle to bringing PEFC to market. The challenge for the industry is how to improve the conductivity of PCMs, where water plays a vital role in proton transportation, under dry condition.

A typical approach previously attempted to improve the conductivity of PCMs under low RH has been to increase the degree of sulfonation in the PCM in an attempt to increase the overall conductivity. [Tchatchoua, C.; Harrison, W.; Einsla, B.; Sankir, M.; Kim, Y. S.; Pirovar, B.; McGrath, J. E., Preprints of Symposia—Am. Chem. Soc., Div. of Fuel Chem. 2004, 49(2), 601] The problem with such an approach is that the membrane tends to swell more with a higher degree of sulfonation, which is detrimental in operation of fuel cell since the dimensional stability of the PCM is a key to the operation. Also, there is synthetic difficulty associated with increasing degree of sulfonation. Furthermore, there is a theoretical limit to the conductivity due to the sulfonyl groups (—SO$_3$H) in the membrane.

An existing and more radical approach to improve proton conductivity is to replace water altogether. PCM with low
volatile solvents such as imidazole have been utilized to replace water. [Kreuer, K. D.; Fuchs, A.; Isc, M.; Spaeth, Maier, M. J. Electrochem. Acta 1998, 43, 1281] Though the proton conductivity of 10⁻⁴ S cm⁻¹ has been achieved at high temperatures, imidazole is known to poison the Pt catalyst and also is subject to diffusing out of the membrane, which is currently fixed through chemical attachment to a host polymer. [Schuster, M. F. H.; Meyer, W. H.; Schuster, M.; Kreuer, K. D. Chem. Mater. 2004, 16, 329.] Also, work exists in which a polybenzimidazole membrane was doped by H₃PO₄ (PIB/ H₃PO₄). [Fontanella, J. J.; Wintersgill, M. C.; Wainwright, J. S.; Savinell, R. F.; Litt, M. Electrochim. Acta 1998, 43, 1289.] Yet, H₃PO₄ is known to be leached out by water on the cathode side. Improvement of the performance of a PIB/ H₃PO₄ membrane has been achieved through the use of polyphosphoric acid, however, the poor performance at low temperature and leaching out of H₃PO₄ by water condensation remain unsolved. [Zhang, H.; Chen, R.; Ramanathan, L. S.; Scanlon, E.; Xiao, L.; Choe, E-W.; Benicewicz, B. C. Prepr. Div. Fuel Chem. Am. Chem. Soc., Philadelphia, Pa., Aug. 22-26, 2004, 49, 588.] In another approach to replace water, inorganic solid acids such as CsH₂SO₄ have been used. [Haile, S. M.; Boysen, D. A.; Chisholm, C. R. L.; Merle, R. B. Nature (London, United Kingdom) 2001, 410, 910.] However, there are concerns regarding this solid acid: reduction of the sulfur in the CsH₂SO₄ electrolyte may occur over time, the reaction with hydrogen forms hydrogen sulﬁde, and also a poisoning to the Pt catalyst may occur. Other solid acids may be less problematic, but the stability of the materials remain problematic since the operation temperatures for these solid acids are close to their thermal decomposition temperatures. Thus, anhydrous (non-water) membranes have not reached a practical stage for operation of PEFC.

Although limited details are provided, a journal article by Saab et al. provides the first limited experimental data on the ionic conductivity of chemically functionalized fullerene. [Saab, A. P.; Stucky, G. D.; Passerini, S.; Smyrl, W. H., Fulleren Science and Technology 1998, 6, 227.] U.S. Pat. No. 6,495,290 B1 discloses proton conducting materials composed of carbon materials including fullerenes with functional groups attached to them. [Hinokuma, K., Ata, M., J. Electrochem. Soc. 150 (2003) A112.] It is claimed that the '290 materials can be used for PEFC under dry conditions. The best conductivity achieved using their materials under dry condition was 10⁻⁴ S cm⁻¹, not very high for operation of a PEFC. The difference from the current subject invention is that: (i) the subject invention’s performance is much higher, 10⁻² S cm⁻¹, than theirs, though the subject invention also uses different fullerenes-based materials; (ii) their materials lose performance as the content of their fullerenes in the CM decreases below 80 wt %, while the subject invention exhibits high performance with only 20 wt % of the subject novel fullerenes in a host polymer, and (iii) the subject invention functional groups attached to the fullerenes are completely different from those listed, suggested, or taught in '290. Furthermore, the '290 approach is to use fullerene as a carrier of proton hopping sites such as the OH groups for proton transportation where a proton is transported between the functional groups attached to fullerene. On the contrary, the subject invention uses novel fullerene derivatives as strong proton sources, i.e., the function in the subject invention is different from '290. Thus, a difference is that the '290 invention relies on the functional groups on fullerenes for proton transportation, while the subject invention uses water as the proton transportation medium and the derivatized fullerenes promote proton conduction as a proton-source, especially under low humidity. Additionally, when cyanogen groups (—CNs) are mentioned in '290 the cyanogen groups are considered to be only "electron attractive groups" that may be "introduced together with" the other listed critical functional groups and only serve to assist the non-cyanogen functional groups that must be present too.

BRIEF SUMMARY OF THE INVENTION

An object of the present invention is to describe a PCM having carbon clusters modified with both hydrogen and cyanogen moieties.

Another object of the present invention is to present a PCM with one component a hydrogen and cyanogen derivatized fullerene.

An additional object of the present invention is to relate a derivatized carbon cluster mixing agent utilized in producing a polymeric system by which the mixing agent facilitates blending of a host polymer and a carbon cluster modified with both hydrogen and cyanogen moieties.

A still further object of the present invention is to disclose a poly(ethylene oxide) derivatized fullerene mixing agent utilized in producing a poly(ethylene oxide) by which the mixing agent facilitates blending of a host polymer and a hydrogen and cyanogen derivatized fullerene.

Yet another object of the present invention is to make known a PCM produced by mixing a hydrogen cyanogen fullerene with a host polymer.

Still yet another object of the present invention is to explain a PCM produced by mixing a hydrogen cyanogen fullerene proton-source agent, a poly(ethylene oxide) mixing agent, and a host polymer.

Generally, the subject invention comprises a PCM having a host polymer and a proton-source agent. The proton-source agent comprises a carbon cluster derivative, wherein the carbon cluster is derivatized with both hydrogen and cyanogen moieties. The carbon cluster derivative comprises from about 0.01 wt % to about 80 wt % of the PCM and may be physically blended with the host polymer or attached to the host polymer. Although any suitable carbon cluster (such as a fullerene family member or equivalent molecule such as a carbon nanotube, open or closed carbon cage-molecule, and the like) that does not interfere with the structural and functional characteristics of the PCM is contemplated to be within the realm of this disclosure. The preferred carbon cluster is usually one of the family of carbon structures known as fullerenes and therefore the carbon cluster derivative usually comprises a hydrogen cyanogen fullerene.

A host polymer is any polymer utilized to generate a functioning PCM such as poly(ethylene oxide) and the like.

When a carbon cluster derivative is blended with a host polymer, the composition may further comprise a mixing agent to promote blending of the carbon cluster derivative with the host polymer. The subject mixing agent comprises one or more poly(ethylene oxide) side chains attached to a carbon cluster, wherein the carbon cluster preferably comprises a fullerene family member or equivalent molecule such as a carbon nano-tube, open or closed carbon cage-molecule, and the like.

It is noted, in general, that the subject PCMs, comprising of the novel subject components, possess an improved performance over existing PCMs under low humidity, <50% relative humidity (RH), and at high temperature (-120° C.) in the operation of polymer electrolyte fuel cells (PEFC).

Further objects of the invention will be brought out in the following portions of the specification, wherein the detailed
description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:

FIG. 1 shows chemical representations for two specific forms of hydrogen cyanine fullerenes, C_{60}H(CN) and C_{60}H(CN)_n, the general acid source in the subject invention, wherein a general formula is C_{60}H(CN)_n with "n" running from 1 to about 60.

FIG. 2 shows chemical representations for two specific forms of poly(ethylene oxide), Mono PEO_{60} and Di PEO_{60}, general mixing agents in the subject invention, wherein a general formula is C_{60}[N(CH_{2}CH_{2}O)$_n$CH$_3$] with "n" running from 1 to about 45 or greater and "m" running from 1 to 2 or greater.

FIG. 3 shows a chemical representation for a general mixing agent in the subject invention, wherein the general formula is C_{60}[CH$_2$C$_6$H$_5$O(CH$_2$CH$_2$O)$_n$CH$_3$] with "n" running from 1 to about 45 or greater and "m" running from 1 to about 8 or greater.

FIG. 4 shows a synthesis scheme for the compounds C_{60}H (CN), C_{60}H(CN)$_n$, C_{60}H(CN)$_2$, and C_{60}H(CN)$_4$.

FIG. 5 shows a synthesis scheme for exemplary C_{60}[CH$_2$C$_6$H$_5$O(CH$_2$CH$_2$O)$_n$CH$_3$]$_m$ (multi-PEO fullerene [PEO$_n$C$_60$] derivatives with various length sizes and numbers of PEO$_n$ chains) molecules by atom transfer radical addition (ATRA) reactions.

FIG. 6 shows the azide addition of PEO-azide to fullerene synthesis scheme utilized to produce exemplary C_{60}[N(CH$_2$CH$_2$O)$_n$CH$_3$]$_m$ molecules, made with numbers of and various lengths of PEO chains.

FIG. 7 shows the proton NMR spectra for C_{60}H(CN) and C_{60}H(CN)$_n$.

FIGS. 8A, 8B, and 8C show the IR spectra for C_{60}, C_{60}H (CN), and C_{60}H(CN)$_n$, respectively.

FIG. 9 shows a proposed reaction mechanism for the synthesis of poly(ethylene oxide) attached fullerene.

FIG. 10 shows the proton NMR spectrum for multi-PEO fullerenes.

FIGS. 11A and 11B show EPR spectra for organic (11A) and transition metal (11B) radical signals from samples of (PEO$_n$)$_m$C$_{60}$.

FIGS. 12A and 12B show MALDI-TOF spectra of (PEO$_n$)$_m$C$_{60}$ (12A) and (PEO$_n$)$_m$C$_{60}$ (12B).

FIG. 13 shows the UV-VIS spectra of Di (PEO$_{60}$)C$_{60}$ in various solvents and thin film.

DETAILED DESCRIPTION OF THE INVENTION

Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in novel proton conducting membranes (PCMs) produced from various suitable combinations of the chemical structures generally shown in or related to those depicted in FIG. 1 through FIG. 3. It will be appreciated that the PCMs may vary as to their exact component percentages, without departing from the basic concepts as disclosed herein.

Generally, the subject invention comprises PCMs having novel proton-source agents and may also contain novel mixing agents that aid in blending the proton-source agents with the host polymer. Contrary to existing PCMs that derive their acidity from weaker acid species like the SO$_2$H group, a typical acid group found on traditional PCMs (pKa of C$_2$H$_5$SO$_2$H is approximately 2, while the pKa of C$_6$H$_5$H(CN)$_3$ is approximately 0.7), the subject proton-source agents utilize stronger hydrogen and cyano acid moieties, yet the subject invention still uses water as a proton transportation medium. To facilitate proton conduction in the PCM, novel proton-source agents are employed that comprise hydrogen cyano derivatized carbon clusters that structurally and functionally incorporate into PCMs. Various types of carbon clusters are possible (see U.S. Pat. No. 6,495,290 B1, which is herein incorporated by reference, for a description of some carbon clusters commonly used or that may be used in forming PCMs), however, a preferred embodiment of the subject invention comprises carbon clusters that are specifically hydrogen cyano fullerenes (HCF; see FIG. 1) which are very strong acids. An HCF functions as an acid source in a PCM in which HCF is mixed in a host polymer or host polymer and a mixing agent (see FIGS. 2 and 3). Strong acids result in higher concentrations of protons, the ion carrier in PCM, in general, due to the higher proton dissociation of the acid; thus, the subject HCFs increase overall conductivity of a PCM, lifting conductivity versus relative humidity (RH). Stronger acids can also hold more so-called “bound water” which may be used for proton transportation, especially beneficial under low RH. The importance of bound water in a PCM has been recognized. [Kimm, Y. S.; Dong, L.; Hickner, M. A.; Glass, T. E.; Webb, V.; McGrath, J. E. Macromolecules 2003, 36, 6281.] This may decrease the slope of found in traditional conductivity versus RH curves, which lifts the conductivity under low RH relative to that under higher RH.

It is noted that the hydrogen and cyano functional groups may be directly connected to the carbons within the carbon cluster/fullerene or physically displaced from the carbon cluster/fullerene surface by a spacer moiety such as methylene(s) or similar appropriate spacer unit(s).

One should appreciate that the proton-source agent may be directly or indirectly chemically coupled to the host polymer and not merely physically blended with the host polymer. Standard chemical coupling procedures may be utilized to generate such linkages.

Often included in the subject PCMs are mixing agents that promote the blending of the subject HCF in with a host polymer, thus allowing the subject HCFs to be well-dispersed throughout the membrane to achieve the maximum performance as a PCM.

More specifically, the subject invention comprises a hydrogen cyano fullerene acid source/proton-source agent, a host polymer, and, if desired, a poly(ethylene oxide) fullerene mixing agent.

ACID SOURCE/PROTON-SOURCE AGENT—Hydrogen cyano fullerenes—One of the subject materials may be expressed in general form as C$_{60}$H(CN)$_n$. FIG. 1 illustrates two typical and non-limiting examples, hydrogen mono-cyano fullerene (C$_{60}$H(CN)) and hydrogen tri-cyano fullerene (C$_{60}$H(CN)$_3$) (see FIG. 4 for additional examples). It must be stressed that fullerenes come in other forms than the common C$_{60}$ species and that these other fullerenes (C$_{60}$, C$_{70}$, C$_{76}$, C$_{84}$, C$_{86}$, and the like) and equivalent hydrogen cyano derivatives are also within the realm of this disclosure. The composition of HCF in a host polymer can be in an extremely wide range (which differs dramatically from existing acid sources utilized in PCMs), but preferably from about 0.01 wt % to about 80 wt %. Again, HCF can be either blended in the host polymer or chemically attached to it.
The exemplary compounds C_{60}H(CN)_{14}, C_{60}H(CN)_{12}, C_{60} (CN)_{10}, and C_{60}(CN)_{8} were synthesized according the synthesis scheme shown in FIG. 4 (see below in the “Examples” section for details).

MIXING AGENT—Poly(ethylene oxide) attached fullerenes. The mixing agents which promote a blending of the hydrogen cyanide fullerenes into a host polymer are comprised of poly(ethylene oxide) attached fullerenes. These materials may be expressed as C_{60}[\{\text{NCH}_{2}CH_{2}O\}_{n}\text{CH}_{2}CH_{2}O\}_{m}]_{z}, wherein “n” and “m” range from 1 to about 45 and from 1 to about 8 or greater, respectively. FIGS. 2 and 3 illustrate some non-limiting examples. The actual chemical linkage of the poly(ethylene oxide) moiety to the fullerene may vary as long as the linkage means does not interfere with the proper functioning and structural integrity of the generated PCM. In general, FIG. 2 illustrates nitrogen facilitated linkages to generate mono and di poly(ethylene oxide) derivatives of fullerene (mono- and di-C_{60} poly(ethylene oxide) (PEO_{C_{60}}), respectively). FIG. 3 depicts phenyl linkages from multiple poly(ethylene oxide) to a C_{60} poly(ethylene oxide) (PEO_{C_{60}}) core. Again, it is stressed that fullerenes come in other forms than the common C_{60} species and that these other fullerenes (C_{70}, C_{72}, C_{90}, and the like) and equivalent poly(ethylene oxide) derivatives are also within the realm of this disclosure.

The exemplary C_{60}[\text{CH}_{2}CH_{2}O(\text{CH}_{2}CH_{2}O)_{10}]_{z} (multi-PEO fullerene [PEO_{C_{60}}] derivatives with various length sizes and numbers of PEO_{C_{60}} chains) molecules were designed and synthesized by atom transfer radical addition (ATRA) reactions (see FIG. 5). It is noted that apparently a limited amount of bromine is incorporated into the final fullerene compounds (the bromine is not indicated in the FIG. 3 structure). In addition, it is the PEO_{C_{60}} chains that produce the mixing agent’s blending properties and not the small amount of bromine.

The exemplary C_{60}[\{\text{NCH}_{2}CH_{2}O\}_{n}\text{CH}_{2}CH_{2}O\}_{m}]_{z}, molecules, made with various length of PEO chain, were synthesized by azide addition of PEO-azide to fullerene (as seen in FIG. 6). The synthesis followed the procedure from literature. [Hawker, C. J., Saville, P. M., and White, J. W., J. Org. Chem. 1994, 59, 3503 and Huang, X. D., Goh, S. H., and Lee, S. Y., Macromol. Chem. Phys. 2000, 201, 2660.] However, unlike those fullerene azide addition reactions, in which mono-azide addition products are always the major products, here we found bis-azide addition products were the major products in all the reactions. Only trace amount of mono-azide addition products were detected (see below for details).

HOST POLYMER—The host polymers in which hydrogen cyanogen fullerenes (HCF) are mixed (and, if selected, also one or more suitable fullerene derivatized mixing agents) to compose a PCM can be any polymers as long as they are thermally, chemically, and mechanically stable, and durable when mixed with HCF under typical fuel cell operation conditions. They can be either proton conductive or non-conductive. The examples include NAION (DuPont), poly(arylene ether sulfone), poly(phosphazenes), polyethers (polyvinyl pyrrolidone), poly(phenylene ether), and other equivalent materials.

EXAMPLES

Example 1

Preparation of the Acid Source/Proton-Source Agent (Hydrogen Cyanogen Fullerenes)

Again, C_{60}H(CN)_{14} and C_{60}H(CN)_{12} were synthesized according the literature (Keshavarz, M., Knight, Srdanov, G., and Wudl F., JACS 1995, 11371).

In particular, for the preparation of C_{60}H(CN)_{14} a degassed solution of NaCN (20 mg, 1.2 eq.) in DMF (20 mL) was added to a degassed solution of C_{60}H(CN)_{12} (260 mg, 0.34 mmol) in ODCB (30 mL) via camula at room temperature. After being stirred 3 minutes, the resultant deep green solution was treated with perchloric acid (0.25 M). After 30 minutes, the brown mixture was concentrated and the solid obtained was chromatographed on silica gel (CS_{2}/Toluene (1:3)). C_{60}H(CN)_{14} was dissolved in ODCB and crystallized by adding ethyl ether or methanol (51% yield). It is noted that during the synthesis of C_{60}H(CN)_{14}, the acidity of trifluoroacetic acid (pKa 0.52) is not strong enough to protonate the C_{60} (CN)_{14}, and a stronger acid like perchloric acid (pKa = 0.6) was needed to protonate efficiently this anion. This approach made it possible to obtain C_{60}H(CN)_{13} in a 51% yield (double that obtained from TFA).

For the preparation of C_{60}H(CN)_{14} degassed solution of NaCN (30 mg, 1.2 eq.) in DMF (40 mL) was added to a degassed solution of C_{60}H(CN)_{12} (400 mg, 0.52 mmol) in ODCB (60 mL) via camula at room temperature under N_{2}. After being stirred 3 minutes, a degassed solution of p-toluene sulfonyl fluoride (189 mg, 2 eq.) in toluene (30 mL) was added via camula to the resultant deep green solution. After 4 hours, the brown mixture was concentrated and the solid obtained was chromatographed on silica gel (CS_{2}/Toluene (1:3)). The solvents were removed and C_{60}H(CN)_{14} was dissolved in ODCB and crystallized by adding ethyl ether or methanol (22% yield).

Characterization of C_{60}H(CN)_{14} and C_{60}H(CN)_{12}·{^{1}H} NMR: By NMR, the characterization of C_{60}H(CN)_{14} and C_{60}H(CN)_{12}, are more difficult than for C_{60}H(CN)_{13} and C_{60}H(CN)_{14}, because they were obtained in the form of different regioisomers. As seen in FIG. 7A, the NMR {^{1}H} spectrum of C_{60}H(CN)_{14} gives one singlet at 6.65 ppm because there is only one isomer. In the case of C_{60}H(CN)_{13} (see FIG. 7B), thirteen singlets appear between 5.8 and 6.5 ppm corresponding to the proton of each of the different regioisomers.

IR: As seen in FIG. 8, the IR spectra of C_{60}H(CN)_{14} (FIG. 8B) and C_{60}H(CN)_{12} (FIG. 8C) show clearly the carbon group (2232 cm^{-1}) that does not appear for C_{60} (1430, 1180, 540 and 525 cm^{-1}) (FIG. 8A).

Mass spectrum (not shown): The negative MALDI-TOF spectra of C_{60}H(CN)_{13} and C_{60}H(CN)_{14} show mainly the parent peaks.

Results from differential pulse voltammetry measurements of subject compounds (not shown): As the number of cyanogen groups on the C_{60} derivatives increased, it became easier to reduce the compounds. Hence, the attachment of four cyanogen groups causes a positive shift of 320 mV, compared to C_{60}.

The hydro cyanogen fullerene derivatives compounds are not soluble in hydroxyl solvents such as water, ammonia, acetic acid, ethanol, etc., making direct titration impossible.

The method used in the literature to determine the pKa of hydro fullerene(s) is through voltammetry. In order to obtain information about the acidity of C_{60}H(CN)_{14} different bases were added to solutions of these compounds. If the acidity of C_{60}H(CN)_{14} was strong enough to protonate the base added and form C_{60}H(CN)_{14}·{^{\text{+}}}, the first reduction peak for C_{60}H(CN)_{14} should decrease in height because C_{60}H(CN)_{14}·{^{\text{+}}} is much more difficult to reduce, its first step of reduction being close to the second reduction step of C_{60}H(CN)_{14}. Four bases were used: the sodium salts of acetic acid, chloroacetic acid, dichloroacetic acid and trifluoroacetic acid. In water, the pKa values of the acids are 4.75, 2.87, 1.35 and 0.52, respectively. The addition of 1 mol of acetate or chloroacetate in DMSO per mol of C_{60}H(CN)_{14} in ODCB resulted in complete disappearance of the first reduction peak of C_{60}H(CN)_{14}, signifying that
C_{60}H(CN) is a much stronger acid than chloroacetic acid. By contrast, addition of 1 equiv of sodium dichloroacetate caused only a 20% reduction in the height of the C_{60}H(CN) peak and no decrease with added trifluoroacetate. This implies that the pKa of C_{60}H(CN) is between chloroacetic acid (pKa: 2.87) and dichloroacetic acid (pKa: 1.35). The same experiments were performed with C_{60}H(CN)\textsubscript{3}. For this compound, the addition of 1 mol of acetate, chloroacetate or dichloroacetate per mol of C_{60}H(CN)\textsubscript{3} resulted in complete disappearance of the first reduction peak of C_{60}H(CN)\textsubscript{3}, signifying that C_{60}H(CN)\textsubscript{3} is a much stronger acid than dichloroacetic acid (pKa: 1.35) but less than trifluoroacetic acid (pKa: 0.52) since only half of the C_{60}H(CN)\textsubscript{3} reduction peak disappeared. Thus, C_{60}H(CN)\textsubscript{3} (pKa around 0.7) is a much stronger acid than C_{60}H(CN) (pKa around 2.5).

Example 2

Preparation of the Mixing Agent (Poly(ethylene Oxide) Attached Fullerenes)

Poly(ethylene oxide) monomethyl ethers (for example, where n = 3, 8, 12, 17, and 45) were functionalized with benzy1 bromide in three steps as shown immediately below in Scheme 1:

![Scheme 1: Functionalizing Poly(ethylene oxide) Monomethyl Ethers](image)

As seen in FIG. 5, in the ATRA step, the fullerene was first dissolved in o-dichlorobenzene (ODCB) in a pressure vessel, then 8 equivalents of PEO-benzy1 bromide (one equivalent yields a mono-PEO final product and the like) and 2,2'-bipyridine were added and the solution was degassed for 10 minutes. After 8 equivalents of CuSO\textsubscript{4}·5H\textsubscript{2}O was added, the vessel was sealed and heated to 110°C for 24 hours until a green precipitate formed. Air was bubbled through the reaction mixture to precipitate un-reacted copper (I) complex. Upon filtration, the solution was concentrated and precipitated into 200 ml of ether. The product, with "m" final PEO chains and "y" bromines, was collected by filtration as a brown oil or solid (final yield was ~90%).

The proposed mechanism for the reaction is presented in FIG. 9.

\(^1\)H-NMR spectra of multi-PEO fullerene in CDCl\textsubscript{3} (FIG. 10) give very broad signals, no signal of fullerene carbon was observed from \(^13\)C-NMR spectra. Both indicates the existence of radicals and (or) random additions of PEO chains to fullerene molecules.

As seen in FIGS. 11A and 11B, two types of radicals were discovered from EPR study of (POE)\textsubscript{m}C\textsubscript{60} solid solution samples. The results indicate that some (POE)\textsubscript{m}C\textsubscript{60} molecules (<1% from calculation) have radicals and small amount of Cu(II) residue still left in the sample (both organic (FIG. 11A) and transitional metal (FIG. 11B) radical signals).

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>% C</th>
<th>% H</th>
<th>% Br</th>
<th>% Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>C60TEGN</td>
<td>72.82</td>
<td>5.64</td>
<td>1.57</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Elemental analysis of (POE)\textsubscript{m}C\textsubscript{60} (Table 1, above) confirmed the existence of Br and Cu(II) residues. Calculation based on the ratio of H gives 5 PEO chains attached to each fullerene molecule by average, which is confirmed by MALDI spectrum of (POE)\textsubscript{m}C\textsubscript{60} (see FIG. 12 with (POE)\textsubscript{m}C\textsubscript{60} (FIG. 12A) and (PEO)\textsubscript{m}C\textsubscript{60} (FIG. 12B)). When longer PEO chains were used in the reaction, fewer numbers of PEOs were reacted to each fullerene molecule probably due to the steric hindrance. To further remove the Cu(II) residue, (POE)\textsubscript{m}C\textsubscript{60} was dissolved in CHCl\textsubscript{3} and bubbled with H\textsubscript{2}S for 4 hours. After this process, the Cu(II) EPR signal disappeared and the fullerene radical signal had no change.

One can see from the MALDI data of (POE)\textsubscript{m}C\textsubscript{60} (FIG. 12A) and (PEO)\textsubscript{m}C\textsubscript{60} (FIG. 12B) that m is ranged from 1 to 8, with an average number about 4 to 5. From the elemental analysis of (POE)\textsubscript{m}C\textsubscript{60}, there is 1.6% bromine, which equals about 0.4 bromine (or y ~0.4) per PEO fullerene, on average. The existence of bromine can be explained by the reactions mechanism (FIG. 9), when a PEO-benzyl radical (compound 2) reacted with a fullerene double bond, a fullerene radical (compound 3) formed. This fullerene radical reacted with either another PEO-benzyl radical to give compound 5 or reversible abstracted bromine from the copper complex (or perhaps compound 1) to give compound 4. Again, any possible bromine is not shown in FIG. 3 since the bromine had no obvious effect on the final PCMs.

Specifically, the exemplary azide addition fullerenes or C\textsubscript{60}\{N\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}O\textsubscript{3}CH\textsubscript{3}\}\textsubscript{n} molecules, made with various length of PEO chains, were synthesized by azide addition of PEO-azide to fullerene (as seen in FIG. 6). As indicated above, the synthesis followed the procedure from literature. [Hawker, C. J., Saville, P. M., and White, J. W., J. Org. Chem. 1994, 59, 3503 and Huang, X. D., Goh, S. H., and Lee, S. Y., Macromol. Chem. Phys. 2000, 201, 2660.] Once again, unlike those fullerene azide addition products, in which mono-azide addition products are always the major products, here we found bis-azide addition products (compounds 5 in FIG. 6 or the Di PEOC\textsubscript{60} with n = 1, 1, 11, and 45 seen FIG. 2) were the major products in all the reactions. Only trace amount of mono-azide addition products (compounds 4 in FIG. 6 or the Mono PEOC\textsubscript{60} with n = 3, 11, 11, and 45 seen FIG. 2) were detected. The structure of compounds 4 and 5 were confirmed.
by 1H-NMR, 13C-NMR and elemental analysis. DSC and TGA studies showed that these materials are thermally stable up to 220°C.

The bis-azide addition fullerenes are very soluble in common organic solvents such as toluene, methylene chloride, chloroform, THF and methanol. Di (PEO)$_{2}$C$_{60}$ and Di (PEO)$_{3}$C$_{60}$ are soluble in water. UV-VIS spectra of Di (PEO)$_{2}$C$_{60}$ in various solvents and thin film are shown in Fig. 13. The large shifts of UV absorption in different solvents strongly indicate aggregation of these molecules.

Example 3

Membrane/Film Preparation

1. Appropriate amounts of the C$_{60}$(CN)$_{2}$H (it is noted that any hydrogen cyanide fullerene may be used for the exemplary C$_{60}$(CN)$_{2}$H proton-source agent) and, if desired, PEO-C$_{60}$ (mixing agent) were weighed and added to ~5 g of Chlorobenzene.

2. Required amount of any desired PEO (host polymer) was added to ~5 g of chlorobenzene in a separate container.

3. These mixtures were sonicated (~10 mins).

4. They were then stirred for about 1 hour at 85°C in an oil bath for 1–2 hours. (PEO tends to gel if the mixing in the earlier stages is not proper.)

5. The resultant homogeneous solution was poured into a TEFILON dish and dried in a 120°C oven for 2–3 hours to get a composite film.

Example 4

Conductivity/Impedance Analysis

An HP LF4192A Impedance Analyzer was used to measure impedance (conductivity). Samples were scanned at frequencies of 0.5 Hz to 11 MHz. The high frequency impedance at zero phase angle was used as the impedance value. For each sample, the polymer film was mounted in a TEFILON fixture having windows for equilibrating with the surrounding atmosphere. The sample films were equilibrated at the required humidity for ~12 hours. The various humidities were achieved by saturated salt solutions of various appropriate salts. Each result in a different humidity in the head space above the solution (a standard technique that is well known in the art). Each sample was suspended in the TEFILON fixture above these salt solutions and measured after equilibration. All measurements were two-probe measurements. For the samples, all were at room temperature (i.e., ~22°C) and an appropriate humidity (most commonly, humidity was ~15–17% RH, but other RHs were utilized for some experiments). The conductivity was calculated from the impedance recorded as seen in Equation 1, immediately below.

Conductivity [S/cm] = (1/R) * (L/A) \hspace{1cm} Equation 1

Equation 1: R [Ohms] = high frequency zero phase angle resistance; L [cm] = length of the conducting film; and A [square cm] = cross sectional area of the conducting film (product of width and thickness of the film for in-plane measurements).

Example 5

First PCM Creation and Analysis Experiments

A specific PCM was prepared (see details above) by mixing poly(ethylene oxide) (70 wt %), hydrogen tri-cyano fullerene (20 wt %), and multiple PEO C$_{60}$ (in which n=3 and m=5 in Fig. 13) (10 wt %) altogether and through solution casting. Then, the proton conductivity was measured at 30°C under 20% relative humidity. Similarly, the conductivity of NAFION 117 was also measured as a control. Table 2 summarizes the results.

<table>
<thead>
<tr>
<th>Subject Sample</th>
<th>Conductivity, 10^{-2} S/cm</th>
<th>NAFION 117</th>
<th>Conductivity, 10^{-3} S/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Sample</th>
<th>Conductivity, 10^{-2} S/cm</th>
<th>NAFION 117</th>
<th>Conductivity, 10^{-3} S/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results (Table 2, above) show more than an order of magnitude higher conductivity for the subject PCM than with the industrial standard NAFION 117 PCM, the control. Additionally, the results shown in Table 2 demonstrate the ability of C$_{60}$(CN)$_{2}$H to impart conductivity to a non-conducting polymer, such as PEO.

REFERENCES

Keshavarz, M., Knight, Srdanov, G, and Wudl F., JACS 1995, 11371.

Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a composition or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, composition, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, composition, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”

What is claimed is:

1. A proton conducting membrane (PCM) comprising a host polymer and a proton-source agent comprising a carbon cluster derivative, wherein said carbon cluster is derivatized with both a hydrogen and a cyano moiety and the PCM further comprises a mixing agent to promote blending of said carbon cluster derivative with said host polymer, wherein said mixing agent comprises a poly(ethylene oxide) attached carbon cluster.

2. A PCM according to claim 1, wherein said carbon cluster comprises a fullerene.

3. A proton conducting membrane (PCM) comprising a host polymer and a proton-source agent comprising a carbon cluster derivative, wherein said carbon cluster is derivatized with both a hydrogen and a plurality of cyano moieties and the PCM further comprises a mixing agent to promote blending of said carbon cluster derivative with said host polymer, wherein said mixing agent comprises a poly(ethylene oxide) attached carbon cluster.

4. A PCM according to claim 3, wherein said carbon cluster comprises a fullerene.

5. A proton conducting membrane (PCM) comprising:
 a) a host polymer;
 b) a proton-source agent comprising a carbon cluster derivative, wherein said carbon cluster is derivatized with both hydrogen and cyano moieties; and
 c) a mixing agent, wherein said mixing agent comprises a poly(ethylene oxide) attached carbon cluster.

6. A mixing agent according to claim 5, wherein said carbon cluster is a fullerene.

7. A mixing agent according to claim 5, wherein said poly (ethylene oxide) attached carbon cluster is selected from a group consisting of \(C_{2n+1}(\text{NCH}_2\text{CH}_2\text{O})_n\text{CH}_3 \) and \(C_{2n+1} \text{CH}_2\text{CH}_2\text{OCCH}_2\text{CH}_2\text{O})_m\text{CH}_3 \), where \(n \) and \(m \) range from 1 to about 45 and from 1 to about 8, respectively.