Carbocations

Hydride ion affinities (kcal/mol)

Carbocation generation

c) Protic acid-catalyzed ROH removal

 $R_{3}^{1}C-OR^{2} + HA$

 R^1 = Aryl, any other cation-stabilizing substituent R^2 = H, alkyl HA = H₂SO₄, HCIO₄, HOSO₂CF₃ (HOTf)

d) $S_N 1 / E1$ dissociation

R¹₃C-X

X =
$$N_2^+$$
 > OSO₂R² > OPO(OR²)₂ > I ...
note: solvation of the cation

e.g.

Carbocation generation

e) Addition of electrophiles to alkenes/alkynes

basis of important C-C bond forming reactions

C-C bond formation using carbocations

Alkylations by allylic cations

3:1 diastereoselection (α : β)

Pearson & Schkeryantz, JOC 1992, 57, 2986.

C-C bond formation: alkylation of alkenes

Carbocation rearrangements

Pirrung, JACS 1979, 101, 7130

Migrations

The migrating groups migrate with their pairs of electrons

- Rearrangements (Wagner-Meerwein shifts) occur very easily with carbocations
- Groups hop back and forth until the most stable carbocation is reached
- Thermodynamic control!

When following through a carbocationic rearrangements, **number the carbon atoms** in the starting material and the product before you try to work out the mechanism.

Cationic rearrangements: adamantane

"the upper layer, a brown mush of adamantane and other products, is decanted carefully from the lower black tarry layer..."

Schleyer, P. v. R.; Donaldson, M. M.; Nicholas, R. D.; Cupas, C. *Org. Synth. Coll. Vol. V*, **1973**, 16-19.

Cationic cyclizations: progesterone

(±)-Progesterone

Johnson, W. S.; Gravestock, M. B.; McCarry, B. E. J. Am. Chem. Soc. 1971, 93, 4332.

Stereoelectronic effects in cationic cyclizations

How camphor gets its shape

Bornyl pyrophosphate synthase caught in the act

Whittington, D. A.; Wise, M. L.; Urbansky, M.; Coates, R. M.; Croteau, R. B.; Christianson, D. W. *Proc. Acad. Natl. Sci. USA* **2002**, *99*, 15375-15380.

Silicon stabilizes positive charge on the β carbon

The C-Si bond is polarized towards the more electronegative atom, C.

The σ_{C-Si} orbital is biased towards C and can easily donate electron density to the neighboring carbocation (by overlapping with the empty p orbital).

Example: in alkynyl silanes, electrophiles attack the silyl end exclusively:

Protodesilylation: retention of alkene configuration

Allyl silanes also react through β -silyl cations

Allyl silanes are much more reactive than vinyl silanes towards electrophiles

Addition of allyIsilanes to C=O: the Sakurai-Hosomi reaction

Heathcock, C. H.; Kiyooka, S.; Blumenkopf, T. A. J. Org. Chem. 1984, 49, 4214.

The reaction usually takes place via an open transition state, e.g.

Reviews: a) Sakurai, H. *Pure Appl. Chem.* **1982**, *54*, 1. b) Masse, C.; Panek, J. *Chem. Rev.* **1995**, *95*, 1293. © Helsinki University of Technology, Laboratory of Organic Chemistry

Migration to electrondeficient N: Curtius RAR

Variants of Curtius: Hofmann, Schmidt, Lossen

Semipinacol rearrangements

If one of the OH groups is converted into a good leaving group, this controls the regiochemistry of the rearrangement:

Heathcock, C. H.; Del Mar, E. G.; Graham, S. L. J. Am. Chem. Soc. 1982, 104, 1907.

Büchi, G.; Hofheinz, W, Paukstelis, J. V. J. Am. Chem. Soc. 1966, 88, 4113.

Demjanov-Tiffeneau

Woodward et al. *JACS* **1973**, *95*, 6853.

Demjanov-Tiffeneau RAR

Favorskii RAR

Goheen and Vaughan, Org. Synth. Coll. Vol. IV, 1963, 594.

Stedman, Miller, Davis & Hoover, JOC 1970, 35, 4169.

