Discovery and Optimization of Novel Inhibitors of the Mitochondrial Permeability Transition Pore

Sudeshna Roy1,5, Justina Šileikyte2, Marco Schiavone2, Benjamin Neuenswander1, Michael Hedrick3, Thomas Chung3, Jeffrey Aubé1,5, Michael Forte4, Paolo Bernardi2, Frank Schoenen1

1University of Kansas, Lawrence, Kansas, USA, 2University of Padova, Padova, Italy, 3Sanford-Burnham Medical Research Institute, La Jolla, California, USA, 4Oregon Health & Science University, Portland, Oregon, USA, 5University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

The mitochondrial permeability transition pore (mtPTP) is a Ca2+-requiring megachannel that permanently opens under pathological conditions and leads to deregulated release of Ca2+ and mitochondrial dysfunction. For the past couple of decades the mtPTP has been implicitly recognized as a therapeutic target for several deadly diseases such as Alzheimer's disease, muscular dystrophies, myocardial infarction, stroke, and diabetes. Herein we report the results of a high-throughput screening/chemical optimization approach that led to the discovery of two new chemotypes: (a) diarylisoazole-3-carboxamides and (b) \textit{N}-phenylbenzamides, which are first subnanomolar inhibitors of the mtPTP. The therapeutic potential and \textit{in vivo} efficacy of the most potent analogues were validated in a biologically relevant zebrafish model of collagen VI congenital muscular dystrophies.

![Chemical structures and SAR optimization]

\begin{itemize}
 \item \textbf{isoxazole hit}
 \item \textbf{SAR optimization}
 \item \textbf{mtPTP inhibitors}
 \item \textbf{SAR optimization}
 \item \textbf{subnanomolar probe}
 \item \textbf{submicromolar probe}
\end{itemize}