Small Molecules for Treatment of Retinal Degenerative Diseases

Christopher Lindsey1,2, Craig Beeson1,2, Baerbel Rohrer1,2, Yuri Peterson2, Nathan Perron2, Cecile Nasarre2, Mausumi Bandyopadhyay2, Richard Comer1, Kimberly Casalvieri1

1MitoChem Therapeutics Inc., Charleston, SC, USA, 2Medical University of South Carolina, Charleston, SC, USA

Retinitis Pigmentosa (RP) is a family of progressive retinal degenerative diseases that affects small populations. The diseases are associated with many different genes hindering drug development – there are currently no treatments. We have hypothesized that metabolic stress is downstream to many of the gene mutations. Recently, a high throughput screen (HTS) was developed under conditions that mimic RP1. Hits from this primary screen were then subjected to a second assay that measures mitochondrial flux capacity, addressing the oxidative stress component affiliated with this neurodegenerative process. Two of these hits, CB11 and CB12, come together to form a pharmacophore from which novel chemical entities were synthesized. From these efforts, a small panel of analogs were developed and tested as a means to optimize protection of mitochondria from metabolic stress. Achieving cellular protection via the cell’s “power house” offers a novel approach towards treating this disease and the potential for addressing other pathologies where mitochondria are part of the degenerative process.