SYNTHESIS OF NATURAL PRODUCTS CONTAINING SPIROKETALS

Margaret Brimble

University of Auckland, Auckland, New Zealand

Natural products have long been regarded as "Nature's medicine chest" providing invaluable platforms for developing front-line drugs. The chemical structures of natural products have evolved over several millennia for a specific biochemical purpose and their molecular frameworks can be considered "privileged scaffolds." This lecture will showcase how natural products that contain intricate spiroketal scaffolds can be synthesized thus providing a platform to develop novel anticancer and anti-obesity agents.

The virgatolides are a family of natural products containing a rare benzannulated 6,6-spiroketal moiety isolated in 2011 from Pestalotiopsis virgatula.1 Virgatolides A-C exhibit cytotoxicity against HeLa cells (IC_{50} ~ 20 µM). The first synthesis2 of virgatolide B is described. Phorbaketal A and alotaketal A are two pseudoenantiomeric natural products, containing a unique spiro-sesterterpenoid core structure.3,4 Phorbaketal A possesses moderate cytotoxicity against a range of cancer cell lines, as well as exhibiting osteoblast and mast cell differentiation activity and inhibition of fatty acid synthesis in the liver. Additionally, alotaketal A activates the cAMP signalling pathway at nanomolar concentrations. Our efforts directed towards the enantioselective syntheses of phorbaketal A and alotaketal A will be described.5