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In vitro selection experiments in biochemistry allow for the discovery of novel molecules capable of speci-
fic desired biochemical functions. However, this is not the only benefit we can obtain from such selection
experiments. Since selection from a random library yields an unprecedented, and sometimes comprehen-
sive, view of how a particular biochemical function is distributed across sequence space, selection exper-
iments also provide data for creating and analyzing molecular fitness landscapes, which directly map
function (phenotypes) to sequence information (genotypes). Given the importance of understanding
the relationship between sequence and functional activity, reliable methods to build and analyze fitness
landscapes are needed. Here, we present some statistical methods to extract this information from pools
of RNA molecules. We also provide new computational tools to construct and study molecular fitness
landscapes.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

1.1. In vitro evolution and fitness landscapes of nucleic acids

Since its introduction in the early 1990s [1–3], in vitro evolution
has proven to be a successful way to discover novel molecules that
are suited to carry out specific biochemical functions. RNA is
widely used in selection experiments because of its ability to carry
out biochemical activities, both in modern biology and in the puta-
tive RNA World of early life, and the availability of methods to syn-
thesize, amplify, and sequence pools of RNA. There are many
examples of functional nucleic acid molecules that result from
in vitro selections, which have been reviewed elsewhere [4]. For
example, the Spinach2 aptamer [5] regulates the fluorescence of a
fluorophore via binding, providing an interesting alternative to
GFP tagging. In vitro selection has been applied to discover a vari-
ety of ribozymes [6], deoxyribozymes [7], aptazymes [8], and
riboswitches [9]. With appropriate polymerase enzymes, selection
experiments can even be done with non-natural nucleic acids, as
shown for a series of xeno-nucleic acids (XNAs). The growing body
of work on in vitro selection of nucleic acids demonstrates the
utility of this evolutionary technique.

Nucleic acid sequences can be thought of as occupying points in
the discrete space of all possible sequences (4L, where L is the
sequence length and the number of dimensions in sequence space).
For a given activity, each point is associated with a fitness value,
which defines a fitness landscape [10,11] in which highly active
sequences form peaks. If that activity were under selection, the
evolution of a population of sequences would be largely governed
by the topology of the fitness landscape [12]. The complete delin-
eation of a fitness landscape is practically limited to short
sequences (certainly L < 30), due to the exponential explosion in
the number of possible sequences with increasing length. The fit-
ness landscapes of short RNA macromolecules are of interest
despite their small size, as short sequences can be functional (i.e.,
ribozymes and aptamers) and they are likely to be more abundant
in an abiotic synthesis compared to long sequences. In chemical
terms, the fitness landscape of sequences is essentially identical
to a structure–activity relationship (SAR), where the structure is
primary (i.e., sequence).

Detailed knowledge of a fitness landscape is of clear interest for
basic understanding of the SAR and the evolution of novel func-
tions. Data from in vitro selections, in general, are well suited to
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mapping fitness (or activity) landscapes. If the map possesses suf-
ficient (e.g., base-by-base) resolution in sequence space, potential
evolutionary pathways can be discovered by identifying networks
of sequences that are connected by small mutational steps. The
importance of understanding the relationship between functional
activity and sequence, together with the potential to study evolu-
tionary issues, provides motivation for constructing and analyzing
maps of molecular fitness landscapes [13–15]. However, until the
advent of high-throughput sequencing techniques, maps of the fit-
ness landscape were difficult, if not impossible, to obtain, owing to
the small amount of sequencing information available via low-
throughput techniques.

High-throughput sequencing (HTS) has been used to delineate
fitness landscapes localized around a known ribozyme [13]. In such
work, the fitness of a given sequence during the selection can be
determined by a direct comparison of the frequency of that
sequence before and after selection, owing to the relatively small
number of variants. In principle, this method could be extended
to delineate the entirety of sequence space given unlimited
sequencing capacity. However, in practice the technique has lim-
ited power to explore the vast volume of sequence space, because
the number of sequences for which the fitness can be inferred can-
not exceed the capacity of the sequencing (e.g., < 1010 sequence
reads for Illumina HTS systems at the time of this writing). In con-
trast, the number of sequences that can be included in the experi-
mental selection, such as from a random pool, is much higher
(� 1016 molecules). The process of sequencing under-samples the
diversity of the pre-selection pool, in particular. Therefore, a
method for inferring the pre-selection frequency of any sequence
would allow access to much larger volumes of sequence space,
up to the experimental capacity of the selection. It must be noted,
however, that post-selection frequencies must be measured rather
than inferred, since we have little ability to predict the outcome of
selection, so the limitation on sequencing capacity translates into a
threshold fitness (i.e., frequency in the post-selection pool), below
which sequences cannot be reliably detected. Although they are
measured, post-selection frequencies may be distorted by biases
associated with sample preparation and sequencing. We have dis-
cussed these issues in detail elsewhere [16]. Here, we briefly
review these issues and describe the computational methods we
have used to reconstruct fitness landscapes from pre- and post-
selection frequencies [15] as a guide to potential practitioners. This
includes expanded capabilities compared to our previously
described platform.

1.2. Theoretical issues associated with estimating true pre-selection
and post-selection frequencies

In any selection experiment, we need to observe the sequences
contained in the experimental pool, both before and after selection.
When the goal is to reliably construct the fitness landscape associ-
ated with the selection process, then observing sequences entails
accurately counting (or estimating) the number of each type of
molecule (i.e., unique sequence) present in those pools.

1.2.1. The pre-selection pool
If we want to map a complete fitness landscape, ideally we start

with an initial pool of molecules that contains all possible unique
sequences, with roughly equal representation. This requirement
automatically limits the length of the random region of sequences
that can be explored, since the number of possible unique
sequences scales exponentially with the length of the random
region. In practice, we are limited to randomized regions of 24
nucleotides if stochastic variations in the initial pool are to be min-
imized. A few more nucleotides can be added to the length of the
Please cite this article in press as: R. Xulvi-Brunet et al., Methods (2016), http
random region at the expense of copy number in the initial pool,
but 28 nucleotides (� 1017) is probably the limit of laboratory fea-
sibility. We assume (consistent with most selection experiments)
that the sequence length is constant (or at least highly similar)
across the selection pool. As an example, let us assume that the
length of sequences in a given random pool is 24 nucleotides. This
means that the number of unique sequences that would comprise
the ideal, initial pool is roughly 424 ’ 1014. In order to accurately
estimate the distribution of molecules (i.e., to find the copy num-
ber of each unique sequence), we would like to have numerous
copies of each unique sequence. Let us assume that we want 100
copies of each of the 424 unique sequences. In this case, we would
need to count around 1016 total molecules in order to obtain the
true distribution. Although this number of molecules can be han-
dled experimentally in bulk, current sequencing technology cannot
count this number. HTS might identify roughly 1010 molecules,
which is several orders of magnitude smaller than the number of
possible unique sequences (1014). Thus, the number of molecules
that we can experimentally count is much too small to directly
measure the true distribution of molecules in a pool of this
diversity.

Although the pre-selection abundance of an individual 24-mer
sequence cannot be directly measured by sequencing, one may cal-
culate a good estimate for its abundance through the creation of a
quantitative, semi-empirical model that describes how an initial
pool of sequences is synthesized [15,16]. This is necessary since
oligonucleotide synthesis is subject to chemical biases (e.g., in cou-
pling efficiency), which prevent true randomness. This model
describes the synthesis from a relatively small set of parameters,
which themselves are estimated from statistical properties of the
sequences present in the pool. For example, we may estimate the
differential coupling efficiencies of A with A;A with C;A with G,
etc., from sequence reads in the pre-selection pool. We can thus
estimate the pre-selection abundances of sequences in the initial
pool. Using model-selection criteria [17], we have found [15,16]
that a reasonable model is one that assigns different reactivities
to a growing chain depending on the identity of the last two
nucleotides and of the incoming nucleotide. This model requires
a relatively small number of parameters that are estimated from
the sequences’ statistics of the pre-selection pool.

Let us consider the case of direct synthesis of an RNA pool. To
estimate the abundance of a sequence, we need to know the prob-
ability with which a nucleotide incorporates to a nascent sequence
at any time. To do that, we first determine the probability with
which the first two nucleotides are synthesized. We assume that
the first nucleotide is attached to the solid support with equal
probability for the four nucleotides, i.e., with
pj ¼ 1=4; 8j 2 fG;A;C;U ðor TÞÞg. (Current protocols allow the user
to set, with reasonable accuracy, arbitrary values for pj by manual
mixing of resins.) Next, we assume that the probability that the
second nucleotide is attached to the first is given by
PðijjÞ ¼ rijCi=

P
i0 ri0 jCi0 , where Ci and Ci0 , for i; i0 2 fG;A;C;U ðor TÞg,

are the concentrations of the nucleotides in solution, and rij are
16 chemical reactivity parameters that account for the likelihood
of dimerization between each potential pairing of the 4 nucleotides
G;A;C, and U (or T) [16].

For the next and subsequent nucleotides, our assumption is that
the probability that a nucleotide is attached to the nascent
sequence is given by Pðijj; kÞ ¼ rijkCi=

P
i0 ri0 jkCi0 , where rijk describes

the likelihood that nucleotide i attaches to a chain whose second-
to-last and last nucleotides are, respectively, j and k. Again,
Ci0 ; i

0 2 fG;A;C;Uðor TÞg, are the nucleotide concentrations in solu-
tion. The total number of parameters in this model is 42 þ 43 ¼ 80.
In order to estimate these 80 parameters, we use the
://dx.doi.org/10.1016/j.ymeth.2016.05.012
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maximum likelihood estimator technique [18], which states that
PðijjÞ can be estimated as

PðijjÞ ¼ djiP4
k¼1djk

; ð1Þ

and Pðijj; kÞ can be estimated as

Pðijj; kÞ ¼ tjkiP4
m;n¼1tjmn

: ð2Þ

In these equations, dji and tjki are the number of times a specific
dimer or trimer, respectively, is found in the central part of the
sequences in the synthesized pool. The reason to only count dimers
and trimers in non-terminal regions of the sequences is that adap-
ter ligation and reverse transcription can bias the first and last six
nucleotides of the sequences [16]. Thus, we recommend estimating
dji and tjki by counting dimers and trimers whose nucleotides do
not overlap with the terminal hexamers.

Once PðijjÞ and Pðijj; kÞ have been estimated, we compute the
probability of finding sequence i1i2i3 . . . in; ik 2 fG;A;C;Uðor TÞg, in
the synthesized pool as

Pi1 i2 i3 ...in ¼ pi1Pði2ji1ÞPði3ji2; i1Þ . . .Pðinjin�1in�2Þ: ð3Þ
Note that, as discussed above, pi1 is assumed to be 1=4.

1.2.2. The post-selection pool
High-throughput sequencing is necessary, as the amount of

sequencing data limits the fitness threshold of the landscape
map. However, several biases can arise during the workup for
HTS. Possible biases included in the HTS workup include the
following.

(1) 50 and 30 adapter ligation: Small segments of RNA (or DNA)
with a specific known sequence are ligated to the 50 and 30

ends of the sequences in the selected pool. These segments
are needed as constant regions, designed as binding sites
for PCR primers, or to anneal the sequences to a support
for sequencing. We had previously chosen an approach of
ligating single-stranded adapter sequences to the random-
ized N24 sequences, in order to avoid effects from built-in
PCR primer regions during the selection [15]. However, this
introduces bias from the process of adapter ligation, which is
catalyzed by T4 RNA ligase. The efficiency of ligating adap-
ters to RNA or DNA sequences depends on the nucleotides
at the terminal regions of those sequences. For instance,
England and Uhlenbeck [19] and Middleton et al. [20],
showed that sequences containing GC; AC, and GA at the
30 end, and TT;TA, and AT at the 50 end, were observed more
frequently after ligation, while sequences with UU at the 30

end and GG at the 50 end were observed less frequently. This
effect can be corrected for during computational analysis
(see following section). Alternatively, PCR primer sequences
can be built into the original design of the initial pool. The
choice of approach depends on the goals of the experi-
menter. Our computational pipeline can be adapted to either
approach.

(2) Reverse transcription: When the nucleic acid is RNA,
reverse transcription is carried out to convert the RNA
sequence into DNA, which is required for current HTS meth-
ods. Reverse transcription is initiated by a primer annealing
to the 30 end of a sequence. Therefore, the efficiency of the
process may depend on the specific sequence to which the
primer anneals. Taken together with adapter ligation, both
protocol steps effectively make sequences which begin and/
or end with a particular nucleotide combination more or less
Please cite this article in press as: R. Xulvi-Brunet et al., Methods (2016), http
likely to be observed. Characterizing these effects allows cor-
rection of the distortion imposed by these biases [16].
The true abundance of sequences in a pre-selection pool can
be computed via the model described in Section 1.2.1. Thus,
no information about the ligation or reverse transcription
bias is needed. Only two things need to be kept inmind: First,
since the relative abundance of sequences reported by a
sequencing device is somewhat inaccurate due to sequencing
errors, those distortions need to be corrected. This can be
done by any algorithm designed to correct sequencing bias
(such as the one described below). Second, probabilities
PðijjÞ and Pðijj; kÞ have to be estimated, as described above,
from dimers and trimers located at the central part of
sequences (which are not affected by the combined bias of
ligation and reverse transcription).
Post-selection pools, however, do need to be treated with
some kind of correction method to estimate the true abun-
dance of each sequence. The method that we propose uses
the biases found in the 5’ and 3’ terminal regions of
sequences in the pre-selection pool as the basis for correcting
the post-selection pools. This involves the following steps:
I. Examine the relative abundance of all pre-selection

sequences reported by the sequencing device and cor-
rect the observed abundance for sequencing errors
(e.g., using the method described later in this section).

II. Classify the observed sequences of the pre-selection
pool from step I according to the first and last 5 nucleo-
tides at the terminal regions of each sequence. That is,
arrange the sequences into the 1024 � 1024 ¼ 1048576
potential sequence classes, such that all sequences in
each class have the same first and last 5 nucleotides.
Then, for each class l, compute the total abundance of
that class; that is, sum the abundances of all sequences
that belong to class l. Finally, divide the total abundance
of each class l by the total number of observed mole-
cules. This gives us the observed probability pobl that a
pre-selection sequence belongs to class l.

III. Using the model described in Section 1.2.1, compute the
true abundance of the sequences in the pre-selection
pool. Next, sort them into the same 1048576 sequence
classes described above and sum the true abundances
of all pre-selection sequences that belong to each class
l. Divide the total abundance of each class l by the total
number of molecules to obtain the probability ptruel that a
pre-selection sequence belongs to class l.

IV. For each sequence class, l, determine the correcting fac-
tor, f l. We find f l by dividing ptruel by pobl .

V. Examine the relative abundance of all post-selection
sequences reported by the sequencing device and cor-
rect the observed abundance for sequencing errors
(e.g., using the method described later in this section).

VI. We correct for the adapter ligation and reverse tran-
scription biases of post-selection data as follows: First,
we identify the class to which a post-selection sequence,
sk, belongs (step II); this determines which correcting
factor, f l, should be used. Second, we multiply the
observed, post-selection abundance of sk by that factor
to obtain the corrected, post-selection abundance of
the sequence.

(3) PCR amplification: PCR can be used to amplify the number
of molecules we want to observe and to introduce additional
constant regions. Ideally, all molecules would be increased
by the same factor, so that a sequence distribution is not
artificially distorted. However, although most sequences
are indeed amplified by approximately the same factor, a
://dx.doi.org/10.1016/j.ymeth.2016.05.012
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small subset may be multiplied much more or much less
than expected (e.g., by an order of magnitude) [21]. If the
goal is to accurately estimate a given sequence distribution,
we recommend minimizing PCR amplification when
possible.

(4) Sequencing: DNA sequences consisting of known constant
regions flanking the initially randomized region are
sequenced by HTS. This step can generate millions to billions
of sequence reads. Sequencing technology sometimes mis-
reads nucleotides, which effectively blurs the sharpness of
the observed distribution in sequence space. However, this
blurring effect can be corrected when accurate models are
developed to describe how and why nucleotides are occa-
sionally read incorrectly [22–28]. Therefore, it is possible
to quantify the effects of those errors on a real distribution
of sequences, and thus recover true sequence distributions
from observed distributions by designing appropriate algo-
rithms. In practice, the error rate of the sequencing tech-
nique should be known so that appropriate corrections can
be made to the fitness landscape. We use what is probably
the simplest model that can quantitatively describe the
sequencing bias associated with the identification of nucleo-
tides by a sequencing device. This model is a first approxi-
mation to deal with sequencing errors. More specific
models associated with specific sequencing devices may be
necessary to improve accuracy.
Our simple model assumes that the probability of a sequenc-
ing device misreading a nucleotide is constant and indepen-
dent of the type of nucleotide to be read, the sequential
position of the nucleotide, and the neighboring nucleotides
in the sequence. Additionally, we assume that when an erro-
neous read occurs, the probability of reporting each of the
threepossible incorrectnucleotides is 1/3, i.e., anyof the other
three nucleotides are equally likely to be falsely reported.
Under these assumptions [16], the total number of unique
sequences containing n sequencing errors is given by
Please
NðnÞ ¼ 3nL!
n!ðL� nÞ! ; ð4Þ

and the probability of finding a particular sequence contain-
ing n errors is

PðnÞ ¼ pL�n 1� p
3

� �n

: ð5Þ

where L is the length of the sequence and p is the probability
that a nucleotide is read correctly.
A simple algorithm to correct for sequencing errors in this
model is based on the following idea: for any sequence i,
the expected number of copies we observe is equal to the
true number of copies multiplied by the probability that it
is correctly read, plus the number of variants of other
sequences that are erroneously identified as sequence i. In
mathematical terms,

hnob
i i ¼ nre

i Pð0Þ þ
X
j

nre
j PðdijÞ; ð6Þ

where nob
i is the observed abundance of sequence i (after

sequencing), nre
i is the true abundance of i (before sequenc-

ing), and PðdijÞ is the probability given by Eq. (5), where dij

is the distance between sequences i and j.
The correction algorithm is as follows:
Step 4.1. First, the sequences are sorted according to their
observed abundance. This results in a list of sequences such
cite this article in press as: R. Xulvi-Brunet et al., Methods (2016), http://dx.do
that the first sequence is the most abundant, the second is
the next most abundant, and so on.
Step 4.2. The second stage of the algorithm is an iterative
procedure that performs the following steps on each item
in the sorted list described above. At each iteration i, the
algorithm estimates the true abundance of the ith sequence
in the list as described below:
Step 4.2.1. For each sequence j, j– i, the quantity

cji ¼ int
nob
j

pL

1� p
3

� �dij

pL�dij

 !
ð7Þ
is computed. nob
j =Pð0Þ ¼ nob

j =pL can be seen as the expected
true abundance, nre

j , of sequence j, provided that it is suffi-
ciently different from other sequences. This is certainly an
approximation; sequence j might actually have some real
neighboring sequences. However, this approximation,
nre
j ’ nob

j =pL, is the key assumption in this heuristic algorithm.

ðð1� pÞ=3Þdji pðL�djiÞ gives the probability that sequence j is mis-
read as sequence i. Finally, intðxÞ is just the nearest integer
function, which converts any real number x into its nearest
integer. Thus, the quantity cji is an approximation of the
expected number of observed copies of sequence i that arises
from misreads of sequence j. P

Step 4.2.2. The quantity ci ¼ jcji is computed. To a first
approximation, ci gives the expected increase in abundance
of sequence i due to erroneous readings of the rest of the
sequences.
Step 4.2.3. The observed abundance nob

i is corrected by sub-
tracting ci from it; thus, we can write nc

i ¼ nob
i � ci, where

nc
i is the corrected abundance of sequence i. This step

reduces the abundance of nob
i by the expected contribution

from all other sequences in the distribution.
Step 4.2.4. If the corrected abundance nc

i satisfies n
c
i P 0, then

nc
i is updated by the next formula: nu

i ¼ intðnc
i =p

LÞ, where nu
i

is the updated abundance of sequence i. Note that the effect
of this final correction simply converts the copies of
sequence i that were lost due to misreading back into
sequence i. If nc

i 6 0, then final updated nu
i is simply set to

zero, nu
i ¼ 0. The role of function intðxÞ is to yield a final inte-

ger number of copies for each sequence.
In [16], we showed from simulation data that this simple
algorithm is sufficiently good to recover a true, unobserved
population of sequences from an observed population that
had been subject to sequencing errors. With real data, the
quality of recovery of the true sequence population depends
on how accurately the simple model discussed above
describes the misreading process.
To summarize, all four steps listed above are potential sources
of experimental bias. As a result, observed, post-selection abun-
dances of unique sequences are, in general, different from true,
post-selection abundances. As has been shown in [15,16], while
the majority of observed abundances are similar to the estimated
true abundances, for some sequences these may differ by up to a
few orders of magnitude. Therefore, we apply computational tech-
niques to correct for the biases.

Constructing reliable and detailed fitness landscapes demands
(1) technology that can identify large numbers of sequences, and
(2) computational protocols to assess and correct for experimental
biases. Here, we detail the computational protocols used in our lab-
oratory, which have been implemented on the Galaxy bioinformat-
ics platform. These protocols include some recent improvements to
our previously published methods [15].
i.org/10.1016/j.ymeth.2016.05.012
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2. Methods

In this section, we first describe the algorithms we use to
construct fitness landscapes. We then describe their practical
implementation using tools on the Galaxy platform
(www.galaxyproject.org) [29]. Our tools are available at http://
galaxy-chen.cnsi.ucsb.edu:8080/.

2.1. Estimating the fitness of the experimentally selected sequences

Step 1. First, address the sequencing errors. Following the ideas
presented in Section 1.2.2, correct both the observed pre-selection
and observed post-selection sequence distributions obtained from
the sequencing device in order to remove as much of the effect of
sequencing errors as possible.

Step 2. Estimate probabilities PðijjÞ and Pðijj; kÞ, according to
Section 1.2.1, in order to build the model that computes the initial
pre-selection sequence distribution.

Step 3. For the post-selection sequences, address biases due to
the adapter ligation and reverse transcription. Following the algo-
rithm described in Section 1.2.2, obtain the corresponding distribu-
tion corrected for adapter ligation and reverse transcription, if
appropriate. Note that the corrected distribution contains only
sequences that meet a certain fitness threshold.

Step 4. Extract the abundance of each sequence i present in the
corrected, post-selection pool. Next, sum these abundances of all
sequences to generate the normalization factor nf. Divide the abun-
dance of each sequence i by nf in order to obtain the ‘‘normalized
abundance”, i.e., the frequency of sequence i after selection, ppost

i .
Step 5. For any sequence i present in the corrected, post-

selection distribution, compute the initial frequency of sequence i
in the pre-selection pool, ppre

i . We can estimate that initial fre-
quency by using the model mentioned previously in Section 1.2.1.

Step 6. The fitness f i of each sequence i may be defined as
ppost
i =ppre

i . In this case, the fitness is defined as the relative enrich-
ment between these two conditions. However, the user may wish
to define fitness differently to suit his or her needs.

2.2. Clustering of related sequences

At this point, the sequencing data are in the form of a list of
unique sequences and their accompanying estimated fitness. For
most purposes, these sequences should be organized with respect
to similarity. A central metric is therefore the distance between
points in sequence space. One of the most often used distances is
the Hamming distance [30]: the number of positions at which
two sequences are different, assuming that both sequences are
equal in length. We can generalize this definition to make it appli-
cable to sequences of different length, as deletions and insertions
can occur during in vitro evolution. First, we find all possible align-
ments of the shorter sequence with the longer one. Then, the min-
imum number of positions at which the shorter sequence differs
from the aligned segment of the longer one, plus the difference
in lengths, yields the generalized Hamming distance between the
two sequences. Alternatively, we can use another definition of dis-
tance: the minimum number of operations, i.e., substitutions,
insertions, and deletions, we must use in order to convert one
sequence into another. This distance, which may always be used
regardless of any length difference between the sequences, is also
referred to as the edit distance [31,32].

The distance metric used for building and analyzing a fitness
landscape can heavily influence the topological features of the
landscape. A simple example illustrates this point. Consider the fol-
lowing two sequences: GCCAGUGGCUUAGAACGGCAUGGGAC and
CCAGUGGCUUAGAACGGCAUGGGACG (note that one is a circular
Please cite this article in press as: R. Xulvi-Brunet et al., Methods (2016), http
permutation of the other). The Hamming distance between these
sequences is 19, while the edit distance between them is just 2.
Thus, depending on the definition of distance we use, these two
sequences may either be isolated from each other in the landscape,
or they may be part of the same peak. When the goal is to group
two sequences closely in the landscape if it is likely they have a
similar secondary structure, or if the operations of the edit distance
are biochemically reasonable, then edit distance is usually the best
metric to consider, although it is more computationally taxing than
Hamming distance. In general, we choose to use the edit distance,
unless the edit distance is expected to give the same outcome as
the Hamming distance, in which case the Hamming distance is fas-
ter to compute. Our algorithms allow either choice.

Once the distance metric has been chosen, sequences can be
grouped into clusters (which may represent fitness peaks, depend-
ing on whether sequence space was sufficiently covered) using the
following simple algorithm. First, sort all sequences in the cor-
rected, post-selection distribution according to their fitness values.
Then, take the highest fitness sequence and compute the distance
from that sequence to every other sequence in the distribution. If
the distance is less than or equal to a certain pre-defined distance
(e.g., 4), consider that sequence to be part of the same potential
cluster as the initially chosen highest fitness sequence. If the total
number of clustered sequences is larger than a pre-defined cutoff
value (e.g., 3), define the first cluster (or peak) as the group of
sequences formed by the highest fitness sequence (the summit of
the peak) and the sequences found to cluster with it. To find the
rest of the clusters, follow the same procedure as many times as
necessary: Take the highest fitness sequence that is not yet
included in a cluster; compute the distances between that
sequence and the other sequences in the distribution; find the
sequences in the potential cluster; and if the number of clustered
sequences is larger than the previously chosen cutoff, define the
corresponding cluster (or peak) as the set of sequences formed
by the selected highest fitness sequence (the summit) and its
cluster of related sequences.

2.3. Discovery of evolutionary pathways

Because the experimental pre-selection pool often provides
only a sparse sample of sequence space, and because of the previ-
ously discussed subsampling due to sequencing limitations, the fit-
ness landscape constructed from a typical selection experiment is
often incomplete, consisting mostly of a set of peaks with different
heights and shapes distributed across sequence space, likely in an
apparently unrelated fashion. Sometimes, however, with sufficient
sequencing depth and coverage of the pre-selection pool, or with
certain topologies of the fitness landscape, it is possible to find
pathways consisting of high-fitness molecules that make stepwise
connections between seemingly distant peaks [15]. Identifying
such potential evolutionary pathways is of fundamental interest.
In principle, an evolutionary pathway in the data indicates a speci-
fic series of mutational steps that could occur during evolution
without passing through a deep fitness ‘valley’.

The discovery technique that we describe is adapted from mod-
ern network theory, and is related to the so-called network tomog-
raphy problem [33,34]. We start by constructing a network whose
nodes, individual sequences in the landscape, will be linked by a
network edge if the distance between them is less than or equal
to a given number, corresponding to the size of permissible muta-
tional steps. If, for example, we assume that this value is one, then
all sequences that are one mutation (i.e., one edit) apart will be
linked by a network edge. Once such a network has been con-
structed, we proceed as follows: Consider a peak center in this net-
work; this initial sequence will be the root node, and we define it
as shell number 0 of the tomography procedure. Then, all edges
://dx.doi.org/10.1016/j.ymeth.2016.05.012
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starting at the root node will be followed until all nodes (i.e.,
sequences) that are a distance of one from the root node are
reached and identified. This new set of nodes is then defined as
shell number 1. Next, all edges leaving a node in shell 1 are fol-
lowed, and all new sequences reached are labeled as nodes of shell
number 2. This same procedure is carried out for shell 2, in order to
identify the sequences that are 3 mutations away from the root
sequence, i.e., shell number 3. The procedure is then repeated until
no more new sequences are found by following the edges leaving
the last shell. If, by carrying out this algorithm, another ‘‘summit
sequence” is found to be in any of the shells, then there must exist
a pathway between the root sequence and the summit sequence
found in that shell; that is, there must exist a pathway between
the two peaks. The length of the pathway will be equal to the shell
number in which the second summit sequence was found.

Different networks can be constructed within the same land-
scape, depending on the value of the maximum step size. By fol-
lowing the algorithm outlined above, we can discover pathways
between peaks that can be traversed with steps of length 1, or
lengths less than or equal to 2, or 3, etc. By increasing the step size,
we are essentially allowing larger and larger mutational jumps
between neighboring sequences in these pathways. This step size
can be set in our algorithm to a value felt to be appropriate by
the researcher.

To illustrate how the network changes when the step size is
increased, we present some results from one of our in vitro directed
evolution experiments. In the experiment, selection pressure
favoring the ability to bind GTP was applied to a pool of RNA
sequences (roughly 24 nucleotides long) over the course of several
rounds; the goal was to determine the fitness landscape with
respect to GTP-binding [15]. Analysis of the experiment showed
that 11 fitness peaks were present in one of the post-selection
pools. Using this pool as an example, we determined how step size
affects the network connectivity, i.e., the number of pairs of peaks
joined by at least one pathway ðpnÞ. As the step size increases, pn
increases toward a maximum, which occurs when all peaks are
connected to each other. This can be seen in Fig. 1, which shows
that there are only 6 connected pairs when the step size is low,
but at larger step size values, pn rapidly increases toward the max-
imum. This behavior can be related to a percolation threshold
phase change in the evolutionary network.

One question that may arise is whether the pathways are statis-
tically significant or not, compared to what one would expect by
chance. One way to approach this is the following: Consider all
sequences in the post-selection distribution that do not belong to
a peak. For each of those sequences, generate a random sequence
of the same length. Then replace all the actual sequences that lie
outside of peaks with the randomly generated sequences. Next,
carry out the algorithm described above to discover the potential
pathways. Repeat this procedure many times in order to compute
the probability that a random pathway is found between two given
peaks. If the probability is too low (in terms of p-value or any other
statistical measure), then the pathway found in the actual post-
selection data is statistically significant. It is very likely, for a func-
tional selection, that the statistical significance tested in this way
will be quite high for a pathway that was detected in the data,
since the absolute number of unique sequences resulting from
the selection is likely to be very low compared to a percolation
threshold for the network [35]. Thus the chance that a pathway
is discovered by chance is very low, at least for low step sizes.
Alternatively, if the data are available, another test of whether
the detected pathway is real is whether it is reproducible in a repli-
cate data set. Finally, other clues may be used, such as whether a
biochemical explanation for the pathway exists (e.g., presence of
a conserved motif).
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2.4. Practical implementation

We implemented our methods using the Galaxy bioinformatics
platform [29]. Before using our tools, any paired end FASTQ data
should be joined and groomed, and any reverse complements
should be converted to align with the expected sequencing output.
The workflow consists of the following tools.

Tool 1. Extractor. The Extractor tool extracts desired
sequences from a standard Illumina output (FASTQ) file
(Fig. 2). It recognizes desired sequences based on a defined 3

0
-

tag appearing in the relevant sequences. The 3
0
-tag is also

removed (5
0
-tags are left on the sequences, but can be removed

by the 5
0
-Extractor tool). Sequences containing motifs which are

suspected to be contaminants, derivatives of tag sequences, etc.,
can also be removed. The Extractor tool returns a list of raw
sequences (not FASTQ format).

Tool 1A. Format converter. If desired, the raw sequences (e.g.,
output from the Extractor) can be converted back into FASTQ for-
mat (e.g., if needed as input for the 5

0
-Extractor tool). This tool

interconverts raw sequences, FASTA, and FASTQ files.
Tool 1B. 50-Extractor. Like the main Extractor tool, this tool

extracts sequences based on the 5
0
-tag sequence, removes the 5

0

tag, and returns the list of raw sequences.
Tool 2. Counter. The Counter tool returns a list of unique

sequences including the copy number (uncorrected) (Fig. 3). It
also returns the total number of unique sequences and the total
number of sequence reads. The output file can now be used as
input for the Corrector, Basic Statistics, or Landscape Constructor
tools.

Tool 3. Corrector. The Corrector tool applies three possible cor-
rections to the data, as desired, to account for sequencing errors,
ligation and reverse transcription biases, and biases in the synthe-
sis of the initial pool (‘fitness correction’) (Fig. 4). Any combination
of these corrections may be applied. Note that the first correction
requires knowledge of the error rate of sequencing. Note that the
second and third corrections require input of the counted sequence
data from the pre-selection pool. Use of this tool is optional if no
corrections are desired.

Tool 4. Landscape constructor. The Landscape Constructor Tool
accepts the file previously output by the Counter or Corrector tool.
The Landscape Constructor clusters the sequences according to
relatedness and determines the presence of evolutionary pathways
(Fig. 5). It takes a counted (and optionally corrected) list of
sequences and makes pairwise comparisons between each set of
two sequences. If one sequence can be converted into the other
within a specific number of insertions, deletions, or substitutions,
they are part of the same cluster (or fitness peak). Within a cluster,
the sequences are sorted by decreasing (corrected) copy number.
This tool also performs basic network analysis on the landscape
to determine various measures of peak connectivity. The tool cal-
culates the clustered list of sequences with their fitness, the his-
togram of fitness, the distances among members of the same
cluster, the distances between cluster centers, and potential evolu-
tionary pathways between clusters. Note that several parameters
can be adjusted, including the definition of clusters, Hamming vs.
edit distance, and the number of edits allowed in one step of the
evolutionary pathway.

Tool 5. Basic statistics. The output from the Counter tool can
also be used for basic characterization of the sequencing data. This
is useful as a quick check of the randomness and quality of the pool
over time and the progress of the selection. The Basic Statistics tool
gives a count of n-mers within the pool (n ¼ 1 to 7), a histogram of
sequence counts, a histogram of lengths, the frequency of each
monomer at each position, and the frequency of each dimer
sequence (16 possible) at each position.
://dx.doi.org/10.1016/j.ymeth.2016.05.012
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Fig. 1. Number of pairs of peaks joined by at least one pathway (pn) as a function of
the step size (ss). Note that, since these data represent 11 peaks, the maximum
number of pathways among the peaks is 11 � ð11� 1Þ=2 ¼ 55. These data are taken
from Replicate 1 of the experiment described previously [15]. Note that peaks and
pathways in the analysis here were defined according to a Hamming distance
metric, for computational expediency while performing multiple analyses. Analysis
based on Hamming distance and edit distance both identify major peaks, but
analysis based on Hamming distance is less sensitive to minor peaks.
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3. Discussion

3.1. The definition of a fitness peak

Our operational definition of peak requires a few assumptions.
We use ‘cluster’ and ‘peak’ interchangeably when discussing
Fig. 2. Extractor
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complete fitness landscapes. However, in the case of a landscape
which cannot be completely explored in vitro (e.g., having more
than 30 random sites), sequences may cluster without revealing
the entire peak. In this case, ‘cluster’ may be the preferred term.

A group of neighboring sequences is defined as a peak only if
the number of sequences in the group exceeds a certain cutoff
value, a number chosen by the researcher. This number may be
chosen to minimize spurious clusters, for example. If the group
of neighboring sequences is smaller than the cutoff value, it is
not classified as a peak. The chosen cutoff may be sufficiently small
(e.g., 1), such that a peak is defined as any set of sequences that
meet the distance criteria for inclusion in the peak (see below). It
is the responsibility of the researcher to choose a reasonable cutoff
value, depending on the goals of the study and the statistics of the
post-selection distribution.

In addition, a cluster is defined as those sequences that are
within a certain cutoff distance (edit or Hamming) from the ‘‘sum-
mit”, which is defined as the highest fitness sequence of that clus-
ter. A small cutoff, for instance, a cutoff distance of 2, will tend to
portray fitness landscapes consisting of dense, small peaks that
may be in close proximity to each other in the landscape. Con-
versely, a large cutoff will tend to build fitness landscapes with a
small number of sparsely populated, large peaks. Again, it is the
responsibility of the researcher to choose a suitable value for the
cutoff distance. We have found that the number of identified peaks
does not depend strongly on the cutoff distance for a reasonable
range of values; beyond a certain point, however, the peaks rapidly
merge. Finally, note that this simple peak definition may place two
peaks next to each other, such that sometimes they might even
screenshot.

://dx.doi.org/10.1016/j.ymeth.2016.05.012
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Fig. 3. Counter screenshot.

Fig. 4. Corrector screenshot.
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share some sequences (in our algorithm for landscape construc-
tion, sequences may be part of more than one peak). The likelihood
of this scenario can be tuned by modifying the cutoff distance, as
mentioned above.

The advantage of defining peaks in this way is that it limits the
computations that are required. Considering that calculating edit
Please cite this article in press as: R. Xulvi-Brunet et al., Methods (2016), http
distances is computationally expensive, this turns out to be an
important advantage. The choice of cutoff values may also be eval-
uated empirically by testing a range of values to ensure that the
overall picture of the resulting fitness landscape, including the
shape and distribution of peaks, is sufficiently robust and
meaningful.
://dx.doi.org/10.1016/j.ymeth.2016.05.012
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Fig. 6. Number of peaks (np) as a function of the cutoff distance (cd). The minimum
number of sequences needed to define a peak was 5, and the distance definition was
the Hamming distance. The data correspond to the data used in Fig. 1. The behavior
of the curve is robust to increases in the minimum number of sequences used to
define a peak (for reasonable values) or the type of distance (Hamming vs. edit).
Note the plateau between cd ¼ 3 and cd ¼ 8.
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The alternative to a simple peak definition, such as the one pro-
posed here, is a definition based on sophisticated clustering tech-
niques [36]. Such techniques are usually computationally
expensive in and of themselves, certainly more expensive than
the simple algorithm discussed above. Also, although some cluster-
ing techniques might potentially offer some advantages over our
definition, it is worth noting that all clustering techniques also
establish some kind of arbitrary cutoff, either regarding the num-
ber of clusters that are allowed to be found, or regarding the dis-
tances that separate clusters. Establishing those corresponding
suitable cutoffs usually entails judgment on the part of the
researcher, just as in our more expedient definition of a peak.

We can offer some rough guidelines that may be helpful in
determining a suitable cutoff distance. One way to decide the value
of this cutoff could be based on how the number of peaks varies as a
function of the cutoff distance. From the preceding discussion, it is
clear that, as the cutoff distance progressively increases, peaks will
tend to merge (and become increasingly sparse). Thus, a reason-
able cutoff distance cd should satisfy the condition that, for dis-
tances greater than or equal to cd, peaks should not merge for a
reasonably long range of cutoff values, i.e., the number of peaks
should be relatively constant for some range of cutoff distances.

Fig. 6 shows, for data corresponding to a real selection experi-
ment, how the number of peaks typically varies as a function of
the cutoff distance. The picture suggests, concordant with our pre-
vious discussion, that a cutoff distance of 3 (or 4) is likely the most
reasonable option. Note that there are 13 peaks for cutoff values of
1 and 2 (which are unreasonably small cutoff values, given the pos-
sibility of mutations and sequencing errors), but some of the peaks
merge when the cutoff increases to 3. The number of peaks
remains constant for values between 3 and 8 (inclusive), which is
depicted in the figure as a relatively long plateau. Then, starting
at a cutoff distance of 9, peaks continue to merge as the cutoff
increases.

3.2. Reproducibility of the reconstructed fitness landscape

If the goal of an in vitro selection is to generate molecules with a
given function, reproducibility of the selection and the generated
fitness landscape is not a primary concern, as any individual candi-
date sequence will be tested for activity. Or, if only a sparse sample
of sequence space was taken, then reproducibility in a replicate
experiment is not necessarily expected, since a second pre-
selection pool is unlikely to contain substantial overlap in
sequences with the first. However, if high coverage of sequence
space was expected, and constructing the fitness landscape was a
goal of the experiment, then a replicate experiment should yield
similar results. The utility of a replicate is twofold. First, it estab-
lishes the reproducibility of the selection itself, which is particu-
larly useful when fitness is understood to be survival through the
selection (which is affected by multiple factors), as opposed to
molecular activity. Second, a replicate aids in characterizing the
level of experimental noise, which affects the identification of
peaks and evolutionary pathways. The level of noise essentially
determines the fitness threshold for reliable detection. A compar-
ison of replicates will show the conservation of major, high-
fitness peaks, but lower-fitness peaks may not be found in both
replicates. While sequences falling below this transition may be
biochemically significant, their detection is unreliable. One may
think of this threshold fitness as a ‘sea level’ below which a fitness
peak or evolutionary pathway cannot be reliably seen. The bio-
chemical activity level to which this fitness threshold corresponds
may not be knowable in advance. In addition, whether repro-
ducibility in replicates can be observed also depends on the topol-
ogy of the fitness landscape. If the selection yields a very flat
landscape with a large number of peaks of similar fitness, it is
Please cite this article in press as: R. Xulvi-Brunet et al., Methods (2016), http://dx.doi.org/10.1016/j.ymeth.2016.05.012
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possible that HTS data will provide only a subsample of the fitness
peaks, such that a second replicate will reveal a different subsam-
ple of the peaks. In this situation, the sequences in the post-
selection pool may be identical in the two replicates (e.g., with
> 1010 sequences), but their identity cannot be determined
because of limitations on HTS sequencing (< 1010 reads). If this
should occur, the stringency of the selection may be increased to
differentiate among the fitness of these peaks, if experimental
replication of the fitness landscape is important.
3.3. Graphical representation of the fitness landscape

The number of dimensions (i.e., the number of independent
variables) in a fitness landscape in sequence space is determined
by the length of the sequences. Since the sequence length in a
selection experiment is greater than two or three, it is impossible
to plot a landscape in a Euclidean space of dimension two or three.
Representation of the landscape therefore requires special consid-
eration. Several groups have already addressed this important
question [37,13,14] and have developed different computational
tools, usually based on principle components analysis, to graphi-
cally represent appropriate aspects of the fitness landscape. How-
ever, when the landscape includes many different, essentially
unrelated, peaks (e.g., [15]), it is not represented well by a small
number of principal components. We used a customized network
representation in this case. Depending on the goal, similar repre-
sentations may be created using the online resource Cytoscape
(www.cytoscape.org) [38].
3.4. Comment on evolutionary fitness and biochemical activity

Selection experiments are usually intended to discover RNA (or
DNA) sequences with a certain biochemical activity. It is some-
times assumed that the fittest sequences, i.e., those achieving high-
est abundance and/or highest rate of increase, are also the most
biochemically active (e.g., having the highest affinity or catalytic
rate). Whether fitness correlates well with activity in practice
depends on the experimental parameters. We have focused on fit-
ness landscapes, but one may also conceptualize an analogous
landscape for biochemical activity (an ‘activity landscape’). If it is
of specific interest to use the fitness landscape to construct the
activity landscape, the extent to which the fitness landscape
(which is measurable through sequencing) corresponds to the
activity landscape should be evaluated. For example, several exem-
plar sequences could be identified and tested individually for activ-
ity to understand the correlation between the biochemical
measurement and the evolutionary fitness. Indeed, the corrections
we have described here are intended to improve this correlation by
removing knowable biases in the fitness measurement. Further-
more, we suggest that methods of estimating fitness based on
the rates of increase may improve upon those based on abundance
alone.
3.5. Recent improvements to the fitness landscape algorithms

We previously developed algorithms in FORTRAN to carry out
the computational tasks described here [15,16]. Recently we trans-
lated these algorithms into a suite of computational tools on the
Galaxy bioinformatics platform, primarily to improve accessibility
to potential users. The new format is web-based and user-friendly.
The updated tools also integrate a number of improvements. These
include the ability to analyze long sequences (up to 1000 nucleo-
tides), to alter the step size in the discovery of evolutionary path-
ways, to turn on and off options as needed for a custom
Please cite this article in press as: R. Xulvi-Brunet et al., Methods (2016), http
experiment, and several improvements that result in faster
runtimes.

Researchers interested in using these tools may visit http://
galaxy-chen.cnsi.ucsb.edu:8080/ or contact us for more information.

4. Conclusion

The robust re-construction of fitness landscapes from data
acquired from in vitro evolution experiments is a topic of funda-
mental interest to both evolutionary biologists and synthetic biol-
ogists seeking new functional molecules. Several technical
challenges exist in the process of mapping fitness landscapes.
Overcoming these challenges requires creating quantitative mod-
els to accurately describe the synthesis of nucleic acids pools and
characterize the ways in which necessary experimental protocols
distort the estimation of molecular distributions. These models
may be used as the basis for correcting for these unwanted effects.
Most computational time, however, is devoted to construction of
the landscape and determination of evolutionary pathways.
Finally, we detail an expansion and implementation of our meth-
ods in the online, user-friendly Galaxy platform.
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