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Abstract The environment of protocells might have been crowded with small molecules and
functional and non-specific polymers. In addition to altering conformational equilibria,
affecting reaction rates and changing the structure and activity of water, crowding might have
enhanced the capabilities of protocells for evolutionary innovation through the creation of
extended neutral networks in the fitness landscape.
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The Crowded Environment

The environment within biological cells is vastly different from the simple buffered
solutions traditionally used in most biological studies. In fact, 30 % of the total cellular
volume is essentially occupied by proteins, nucleic acids (Zimmerman and Trach 1991)
and a complex mixtures of metabolites, ions, and polyamines (Bennett et al. 2009; Tabor
and Tabor 1985). Concentrations of biomolecules in a modern eukaryotic cell exceeds
those used in most in vitro experiments by a factor of 10–100 (Ellis 2001). A similarly
crowded situation might have existed in the earliest cells, such as with non-specific
polymers synthesized prebiotically. Therefore, possible effects of crowding on the origins
of cellular life should be carefully considered.

The concept of crowding encompasses a number of effects, such as enhanced concentra-
tions and altered conformational equilibria of solutes, and changes in water structure and
activity. Although these effects are related, their physical underpinnings are somewhat differ-
ent. The highly crowded intracellular environment has a major influence on at least two types
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of intermolecular interactions: hard-core physical repulsions and chemical (‘soft’) interactions
(Wang et al. 2012). Hard-core repulsions in a crowded environment reduce the number of
available conformational states and favor compact molecular states (Minton 1981). The
space excluded by macromolecules and cellular organelles is effectively inaccessible to
other molecules, creating an excluded volume effect due to steric hindrance (Minton
1998). This entropic effect is thought to cause the observed improved native-state
folding of biopolymers (Cheung et al. 2005), although enthalpic effects might also play
a role (Senske et al. 2014). The excluded volume effect not only increases chemical
activities of dissolved solutes but also alters the kinetics of biological processes,
possibly by several orders of magnitude (Lareu et al. 2007; Munishkina et al. 2004).
There are two opposing effects of excluded volume that might influence the reaction
rates (Minton 1998). If the rate of decay of the transition state complex controls the
overall reaction rate, then crowding favors the forward reaction through enhancing the
relative abundance of the transition state complex. However, if the overall reaction rate
depends on collisional frequency of the reacting molecules, then crowding, which
retards diffusional motion (Muramatsu and Minton 1988), reduces the forward reaction
rate (Minton 2001).

Chemical interactions can be attractive or repulsive. In the crowded environment,
repulsion between like charges reinforces the effect of hard-core repulsion. In contrast,
attractive interactions between macromolecules of interest and other components of
cells destabilize the folded states by exposing more surface to the crowding molecules
(Sarkar et al. 2013). Thus, the effect of crowding depends on the details of the system
at hand.

The structure and dynamics of water, the universal solvent for life (Pohorille and Pratt
2012), are also significantly perturbed in crowded, confined environments. Numerous studies
show that hydrophobic interactions in these environments markedly differ from those in bulk
aqueous solution. Similarly, the dynamics of water exhibit significant modifications. For
example, the solvation relaxation time of a water molecule is significantly retarded in the
presence of amphiphilic assemblies, such as vesicles (Saha et al. 2011) and lamellae (Verma
et al. 2010).

These considerations illustrate that crowding and confinement influence the structure and
function of biomolecules (Nakano et al. 2013; Saha et al. 2013). These conditions might have
also affected rates of protocellular reactions, thus shaping the primordial metabolism. Here, we
hypothesize that the crowded environments of protocells (Fig. 1) not only influenced biomo-
lecular structures and chemical kinetics, but also promoted Darwinian evolution.

Evolution in the RNAWorld

Evolution of an informational polymer can be conceptualized as a random walk
through the space of all of its possible sequences. Variations in fitness bias this walk,
yielding a ‘fitness landscape’ in sequence space in which peaks represent sequence
families that are fit (Maynard Smith 1970; Wright 1931). It has been proposed that
this landscape contains large, near-neutral networks, which allow biological systems to
discover innovations by traversing long distances in sequence space without apprecia-
ble loss of fitness (Ellington et al. 2009; Gavrilets 2004; Rendel 2011; Schuster
2011). In fact, it was suggested that such networks provided the main evolutionary
paths for primordial life (Maynard Smith 1970). RNA is a particularly elegant
genomic material, because it can exhibit both templating and catalytic activity. An
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RNA fitness landscape for ‘shape’ was studied by in silico RNA folding, showing a
vast, interconnected network of neutral mutations (Schuster et al. 1994).

Recently, we studied whether neutral networks can be found experimentally during
in vitro evolution of RNA (Jiménez et al. 2013). A random library of 24-mers that
saturated sequence space was subjected to in vitro selection for interaction with
guanosine triphosphate-agarose resin. The analysis revealed several fitness peaks and
identified a few evolutionary pathways among them. However, a major finding from
this work was that the fitness peaks were largely isolated from one another. In
contrast to the neutral networks of RNA shapes (Schuster et al. 1994), this landscape
topology suggests that historical accidents essentially determine evolutionary out-
comes. Yet neutral networks are desirable for evolutionary optimization. We hypoth-
esize that certain environments might reveal neutral evolutionary networks.

Fig. 1 Illustration of the crowded environment of a protocell. The ribozymes (red) are encapsulated in a fatty
acid vesicle (diameter~100 nm) that is crowded by various prebiotic polymers and subcellular structures.
Elements of this illustration are not drawn to scale

Fig. 2 A schematic of disconnected fitness landscape, as found by Jiménez et al. (2013) (left panel) and a
landscape forming a near-neutral network, as anticipated for a crowded environment (right panel)
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RNA Evolution in Crowded Environments

Evolution is inextricably linked to environmental conditions. Fitness and heritability can
only be defined in the context of a specific environment. In the realm of the RNA World
hypothesis, a biochemical environment of interest for early evolution is a membranous
compartment that contains RNA and presumably other specific or non-specific polymers
and small molecules (Szostak et al. 2001). These components would create a crowded
environment for RNA. Crowding can stabilize structures of functional RNA and increase
their activity (Desai et al. 2014; Nakano et al. 2013; Strulson et al. 2012). It has been
proposed that crowding reduces configurational entropy and widens the free energy gap
between folded and unfolded states (Kilburn et al. 2013). Crowding can also increase
catalytic turnover and activate catalytically less active ribozyme sequences (Nakano et al.
2009). For a hairpin ribozyme, the cellular environment shifts the equilibrium between
cleavage and ligation markedly towards cleavage (Donahue et al. 2000). The effect of
crowding appears to be more pronounced at low ionic strength (Desai et al. 2014; Strulson
et al. 2013), a feature of interest for fatty acid protocells that are sensitive to ionic strength
(Adamala and Szostak 2013; Chen et al. 2005). Indeed, the cellular environment may
stabilize active folds better than Mg+2 alone (Tyrrell et al. 2013).

On the basis of the experimental findings outlined above, we hypothesize that the
protocellular environment provides crowded conditions that might enhance evolution-
ary connectivity on the fitness landscape (see Fig. 2). A possible mechanism would be
simply enhancing RNA folding and reaction rates, thus raising many sequences that
are essentially inactive in dilute aqueous solution to a high level of activity. If this
enhancement reaches a critical threshold it could potentially reveal a giant neutral
network in sequence space (Gavrilets 2004). This means that crowded protocells
might enable evolutionary optimization of functional RNAs that would not be possible
in dilute aqueous solution. Furthermore, by increasing the frequency of functional
sequences, crowding might make the evolution of novel functions substantially more
probable. Thus, in addition to creating competition among individuals in heteroge-
neous populations of protocells (Szostak et al. 2001), compartmentalization in
protocells might enhance Darwinian evolution through biophysical effects on encap-
sulated RNA.

An experimental test of our hypothesis is possible in principle, by comparison of
fitness landscapes in the absence and presence of crowding agents (e.g., in the method
of Jimenez et al.). Analogous in vitro evolution experiments carried out on longer
RNA molecules, though unlikely to detect neutral networks, might provide valuable
information about how the probability of discovering a functional RNA in sequence
space depends on RNA length.

In summary, modern life is characterized by biochemical reactions in highly crowded
environments. We hypothesize that crowding was also present in protocells and might have
enhanced evolutionary optimization and innovation.
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