Structure of Polyhedral Oligomeric Silsesquioxanes (POSS) Oligomers Using Ion Mobility Mass Spectrometry and Molecular Mechanics

by

Stanley Anderson (Westmont College)

Erin Baker, Connie Mitchell, Dena Bodzin, Michael T. Bowers (UCSB)

Tim Haddad, Ashwani Vij, Joe Schwab (Edwards AFB)
Why Study Silicon-Based Nanomaterials??

• A wide range of application from polymer modifiers to lubricants

• Robust physical and thermal properties of polymer systems useful for space applications

• Addition of POSS substituents gives polymers with
 – extended temperature ranges
 – reduced flammability
 – lower thermal conductivity
 – reduced viscosity
 – resistance to atomic oxygen
 – low density

• Major interest and funding by AFOSR!
Anatomy of a Polyhedral Oligomeric Silsesquioxane (POSS®) Molecule

Nonreactive organic (R) groups for solubilization and compatibilization.

Nanoscopic in size with an Si-Si distance of 0.5 nm and a R-R distance of 1.5 nm.

May possess one or more reactive groups suitable for polymerization or grafting.

Thermally and chemically robust hybrid (organic-inorganic) framework.

Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils.
Condensed POSS Cage Structures

- R_6T_6
- $R_{10}T_{10}$
- R_8T_8
- $R_{12}T_{12}$
Partially Condensed POSS Cage Structures Provide Synthetic Routes to Monomers

\[\text{R}_4\text{D}_4(\text{OH})_4 \]
\[\text{R}_6\text{D}_6(\text{OH})_2 \]
\[\text{R}_7\text{D}_7(\text{OH})_3 \]

\[\text{R} = \text{C}_6\text{H}_{11} \quad (\text{Cy}) \]
\[\text{C}_5\text{H}_9 \quad (\text{Cp}) \]
Goals of POSS Work

• Understand how structure and functionality of POSS monomers affects polymer structure and properties

• Interact with synthetic chemists to characterize reaction steps and products

• Study oligomer structures in detail

• Create polymers with tailored properties.
Concept of Ion Mobility

\[\vec{v} = \text{const.} \]
\[\vec{v} = K \vec{E} \]

\[K = \text{ion mobility} \]
\[K = f \left(T, \ p, \ q, \ \mu, \ \sigma \right) \]

\[T = \text{temperature} \]
\[p = \text{pressure} \]
\[q = \text{ion charge} \]
\[\mu = \text{reduced mass} \]
\[K = \text{ion mobility} \]
\[\sigma = \text{collision cross section} \]

\[\sigma = f \left(\text{He–ion interaction}, \ \text{ion shape} \right) \]
Time-of-Flight (TOF) Mass Spectrometry

TOF Mass Spectrum

1500 1600 1700 1800

MASS

M + Li+

M + Na+

SOURCE

TOF DETECTOR

TOF REFLECTRON

DRIFT CELL

QUADRUPOLE

DETECTOR

hv

Trigger

M + Na+

Mass Spectrum
Time-of-Flight (TOF) Mass Spectrometry

Arrival Time Distribution

→ One structure

ATD

→ Multiple structures
Theoretical Method

Molecular Mechanics/Dynamics

(Annealing/Energy Minimization)

AMBER 7 parameterized for Si

• Heat guess structure for 30 ps at 600-1400K
• Cool structure exponentially to 50K for 10 ps
• Energy minimize the structure
• Use final structure as initial structure for next cycle
Theoretical Method

Structures

Collision Cross-Sections (σ)

Relative Energy (kcal/mol)

Cross-Section (Å2)

-5 0 5 10 15 20 25

220 240 260 280
Putting It All Together....

Experimental Method

ARRIVAL TIME DISTRIBUTIONS (ATDs) \(\rightarrow \) MOBILITIES \(\rightarrow \) COLLISION CROSS-SECTIONS

Theoretical Method

MOLECULAR MECHANICS/DYNAMICS \(\rightarrow \) STRUCTURES \(\rightarrow \) COLLISION CROSS-SECTIONS

\(\sigma \)

\(K_0 \)

Compare

Putting It All Together....

Experimental Method

ARRIVAL TIME DISTRIBUTIONS (ATDs) \(\rightarrow \) MOBILITIES \(\rightarrow \) COLLISION CROSS-SECTIONS

Theoretical Method

MOLECULAR MECHANICS/DYNAMICS \(\rightarrow \) STRUCTURES \(\rightarrow \) COLLISION CROSS-SECTIONS

\(\sigma \)

\(K_0 \)

Compare
[MALDI-TOF Spectrum of (PMA)Cp₇T₈]ₓ·Na⁺

...adding ATDs and experimental cross-sections

\[\sigma_{\text{expt}} = 248 \text{ Å}^2 \]

\[\sigma_{\text{expt}} = 377, 402 \text{ Å}^2 \]

\[\sigma_{\text{expt}} = 539 \text{ Å}^2 \]
(PMA)Cp₇T₈·Na⁺ Scatter Plot
(PMA)Cp$_7$T$_8$·Na$^+$ 1-mer Structure

$\sigma_{\text{expt}} = 248 \text{ Å}^2$

$\sigma_{\text{theory}} = 252 \text{ Å}^2$
[(PMA)Cp₇T₈]₂Na⁺ 2-mer Scatter Plot
\[(\text{PMA})\text{Cp}_7\text{T}_8\]_2\cdot\text{Na}^+ \text{ 2-mer Scatter Plot}

Cross Section (Å²)

Relative Energy (kcal/mol)
[((PMA)Cp_7T_8)_2\cdot Na^+ 2-mer Scatter Plot

Cross Section (Å²)

Relative Energy (kcal/mol)

trans
[(PMA)Cp_7T_8]_2 Na^+ 2-mer Scatter Plot

Cross Section (Å²) vs. Relative Energy (kcal/mol)

- cis
- extended trans
- trans
[(PMA)Cp₇T₈]₂Na⁺ (2-mer) Structures

trans
\[\sigma_{\text{expt}} = 378 \text{ Å}^2\]
\[\sigma_{\text{theory}} = 377 \text{ Å}^2\]

\(\sigma_{\text{expt}}\)
\(\sigma_{\text{theory}}\)

\(\sigma_{\text{expt}} = 402 \text{ Å}^2\)
\(\sigma_{\text{theory}} = 393 \text{ Å}^2\)

extended trans
\[\sigma_{\text{expt}} = 402 \text{ Å}^2\]
\[\sigma_{\text{theory}} = 393 \text{ Å}^2\]
[(PMA)Cp₇T₈]₂·Na⁺ Dynamics

Cross-sections (Å)

Time (ps)

300K

"cis"

"trans"

800K

"cis"

"trans“ + “ext. trans"
[(PMA)Cp₇T₈]₃·Na⁺ 3-mer Regioisomers

syndiotactic

\[\begin{align*}
\text{R} &= \text{POSS(propylmethacryl)} \\
* &= \text{chiral center}
\end{align*} \]

isotactic
\((\text{PMA})\text{Cp}_7\text{T}_8\)\text{Na}^+ 3\text{-mer Scatter Plots}
\[(\text{PMA})\text{Cp}_7\text{T}_8\]_3\cdot\text{Na}^+ 3\text{-mer Scatter Plots}

Cross-section (Å²) vs. Relative Energy (kcal/mol)

- Isotactic isomer
- Syndiotactic isomer
[(PMA)Cp_7T_8]_3·Na^+ Syndiotactic Isomer

8.3 – 8.9 Å (cage centers)

\[\sigma_{\text{expt}} = 539 \text{ Å}^2\]
\[\sigma_{\text{syn}} = 540 \text{ Å}^2\]
\[\sigma_{\text{iso}} = 565 \text{ Å}^2\]
Non-POSS PMA 8-mer vs. [(PMA)Cp_7T_8^-]_8 8-mer
POSS-PMA Oligomer Summary

1. Low energy structures obtained by molecular modeling agree with experiment within ~2%.

2. Cis, trans, and extended trans structures of the 2-mer give rise to the two ATD features.

3. Structures seem to be determined primarily by non-bonded interactions of the cyclopentyl capping groups that cause the cages to pack in a variety of ways.

4. 3-mer structure is consistent with the syndiotactic regioisomer; it shows cage-cage non-bonded interactions similar to 2-mer.

5. Presence of the cation does not determine the oligomer backbone structure as in non-POSS oligomeric systems previously studied.
POSS Siloxanes

Cy = cyclohexyl

Cp = cyclopentyl
$[\text{Cp}_7 \text{T}_8]_2 \text{O} \cdot \text{Na}^+$ Siloxane 2-mer Mass Spectrum
$[\text{Cp}_7\text{T}_8]_2\text{O} \cdot \text{Na}^+$ Siloxane 2-mer Mass Spectrum

\[\sigma_{\text{expt}} = 355 \text{ Å}^2 \]

ATD
[Cp₇T₈]₂O·Na⁺ Siloxane 2-mer Scatter Plot

σ_{calc} = 357 Å²

σ_{expt} = 355 Å²

σ_{calc} = 365 Å²
[\text{Cp}_7 \text{T}_8]^2 \text{O} \cdot \text{Na}^+ \text{ Siloxane 2-mer Comparison}

\text{Cp} = \text{cyclopentyl}

\text{Staggered:} \quad \sigma_{\text{calc}} = 357 \text{ Å}^2, \quad \sigma_{\text{expt}} = 355 \text{ Å}^2

\text{Eclipsed:} \quad \sigma_{\text{calc}} = 365 \text{ Å}^2, \quad \sigma_{\text{expt}} = 355 \text{ Å}^2
[Cy₇T₈]₂O·Na⁺ Siloxane 2-mer Structures

Cy = cyclohexyl

No folds

σ\text{calc} = 433 \text{ Å}^2
σ\text{expt} = 400 \text{ Å}^2
[Cy\textsubscript{7}T\textsubscript{8}]\textsubscript{2}O\cdotNa+ Siloxane 2-mer Structures

Cy = cyclohexyl

3 folds

σ\textsubscript{calc} = 395 Å2
σ\textsubscript{expt} = 400 Å2
[Cy$_7$T$_8$]$_2$O Siloxane 2-mer **X-Ray** Structures

$\text{Cy} = \text{cyclohexyl}$

100 K

All Cy’s equatorial

300 K

Cy’s disordered (chair to boat)
[Cp₇T₈]₂O·Na⁺ Siloxane 2-mer Cage Separation

8.3 – 8.6 Å Cage Centers

Covalent cage-cage (center) distance provides benchmark for non-bonded interactions!
[Cy₇T₈O-Cy₈T₆D₂-OCy₇T₈]⁺Na⁺ “3-Mer” Mass Spectrum

σₜₚₑₓₜ = 557 Å²

σₑₜ₉ₑₜₑₒ = 557 Å²
Siloxane Summary

- Low energy siloxane 2-mer and 3-mer structures obtained by molecular modeling agree with experiment within ~2%.

- Staggered or folded R group structures more compact.

- Structures seem to be determined primarily by non-bonded interactions of the cycloalkyl capping groups that cause the cages to closest pack.

- Distances between center of cages in siloxane 2-mer are in range from 8.3 – 8.6 Å. This provides a benchmark for cage-cage interactions.
Where are We Headed??

1. Larger Oligomers – we have been limited to trimers
2. Detection issues – larger oligomers without electronegative groups not detected!
3. Novel synthetic approaches to suitable oligomers:
 - Prepare amino derivatives which can be protonated (Bryan Coughlin, U. Mass.)
 - Fluoride derivatives – modify MALDI/TOF for routine negative ions or negative ion mode ESI
Acknowledgments

• AFOSR $$$$

• ASEE Summer Faculty Fellowship, 2005.

• Bryan Coughlin, U. Massachusetts
 David Marten, Westmont College
The Bowers Group

Website: http://bowers.chem.ucsb.edu