Structural Examination of the Peptide-Zinc interaction in the Divalent Oxytocin Complex

Alexandra Seuthe, Dengfeng Liu, Oli Th. Ehrler, Xiaohua Zhang, Thomas Wyttenbach and Michael T. Bowers
Oxytocin (OT) Structure

- Synthesized in posterior pituitary and released into circulation.
- Receptor is G-protein found in smooth muscle cells.
- Conformation of OT ligand dramatically affects binding to receptor.

Virtually all vertebrate species have an OT-like hormone:
- Disulfide bridge b/t residues 1 and 6
- Cyclic portion, 3 residue amidated tail
- Synthesized in posterior pituitary and released into circulation.
- Receptor is G-protein found in smooth muscle cells.

Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly(NH₂)

\[\text{S} - \text{S} \]
Oxytocin (OT) Function

- OT is found in equivalent concentration in both sexes.
- OT has been linked to several physiological activities:
 1) Uterine contractions during birth
 2) Lactation

Also responsible for “Affiliation” in mammals.

Establishment of complex social and bonding behaviors related to reproduction and the care of offspring.

i.e. maternal behavior, infant separation distress, mate formation

- Linked to autism.
Metal-OT Complexes

Why Zinc?

Zinc Fingers: Protein motif that binds DNA
Transcription Factors necessary for DNA replication.

OT and Divalent Metal Cations

• Essential elements and other metals have been found to form complexes with OT.
 \[\text{i.e.: Cu}^{2+}, \text{Zn}^{2+}, \text{Co}^{2+}, \text{Mg}^{2+}, \text{Ca}^{2+}, \text{Ni}^{2+} \]

• The presence of divalent cation is essential for specific binding of OT to receptor.

~ 30 residues
OT = 9 residues
Research Objectives

Characterize the OT-Zinc complex.

Observation:

Divalent metal cations required for OT-Receptor binding.

OT has high affinity for divalent metal.

Lock and key model: Receptor binding is conformation-dependent.

Question:

Does Zinc bind to receptor or ligand?

What are the binding properties of the OT-metal complex?

Does Zinc cause a conformational change which will enhance binding?

Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly(NH₂)
Experimental methods

- Mass spectrometry
- Cross section (collisions with helium)
- Hydration (equilibrium with water vapor)

Theoretical methods

- Molecular mechanics
- Density functional theory

Cross section

Protons/Metal ions
Molecule size/shape
Molecule surface

Cross section

Molecule structure
Instrumentation

ESI Ion Source → Ion Funnel → Drift Cell → MS → Detector
Instrumentation
Instrumentation

ESI Ion Source → Ion Funnel → Drift Cell → MS → Detector

To Pump

Drift Cell

Quad Analyzer

Ion Funnel

Ion Optics

Detector
Instrumentation
Instrumentation
Instrumentation

ESI Ion Source → Ion Funnel → Drift Cell → MS → Detector
Hydration under equilibrium conditions

ESI Ion Source → Ion Funnel → Drift Cell → MS → Detector

M⁺ in 1–2 torr H₂O Drift cell M⁺•(H₂O)ₙ out
Cross section measurements

ESI Ion Source → Ion Funnel → Drift Cell → MS → Detector

1–5 torr He Drift cell

E → in → out
Cross section measurements

Slow Component: Large Cross Section
Fast Component: Small Cross Section
Experimental Results

Mass Spectrum Oxytocin

![Mass Spectrum of Oxytocin](image)

- [O T+H]
- [O T+H+K] 2+
- [O T+H+Na] 2+
- [O T+2H] 2+
- [O T + H] +1

m/z

200 400 600 800 1000 1200

+2

+1
Mass Spectrum of Oxytocin
Mass Spectrum
Oxytocin

with ZnCl$_2$
Mass Spectrum
Oxytocin

with ZnCl$_2$
How does zinc interact with OT?
Theory Results: OT-H⁺
Bare OT

Theory: MM - CHARMM force field
DFT - SVP basis set; BP86 functional

Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly(NH₂)

228 Å² (calc)
230 Å² (exp)
Theory Results: OT-Zn\(^{2+}\) Complex

- **Theory:** MM - CHARMM force field
 - DFT - SVP basis set; BP86 functional

- **Zn–O distance:** 204-215 pm
- **Zn\(^{2+}\) + O ionic radius:** 214 pm

- **Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly(NH\(_2\))**
- **S – S**

- **Octahedral coordination sphere**

- **236 Å\(^2\) (calc)**
- **236 Å\(^2\) (exp)**
Isotocin (IT)

<table>
<thead>
<tr>
<th>OT</th>
<th>Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly(NH₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S – S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IT</th>
<th>Cys-Tyr-Ile-Ser-Asn-Cys-Pro-Ile-Gly(NH₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S – S</td>
</tr>
</tbody>
</table>

Osteichthyes – Bony Fish
Isotocin (IT)

OT: Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly(NH$_2$)
 S – S

IT: Cys-Tyr-Ile-Ser-Asn-Cys-Pro-Ile-Gly(NH$_2$)
 S – S

Osteichthyes – Bony Fish

- donating backbone oxygen

- donating backbone oxygen
Comparison With Experimental Results

1.) Cross Section

<table>
<thead>
<tr>
<th></th>
<th>σ [Å²]</th>
<th>Exp.</th>
<th>MD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(OT+H)^+$</td>
<td>230</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>$(OT+Zn)^{2+}$</td>
<td>236</td>
<td></td>
<td>236</td>
</tr>
<tr>
<td>$(IT+Zn)^{2+}$</td>
<td>222</td>
<td></td>
<td>225</td>
</tr>
</tbody>
</table>

2.) Hydration
Hydration of \((\text{Oxytocin} + \text{Zn})^{2+}\)

\[(\text{OT} + \text{Zn} + n \, \text{H}_2\text{O})^{2+}\]

0.5 torr H\(_2\)O
300K
Hydration data

(OT+H)⁺

<table>
<thead>
<tr>
<th>$n \text{(H}_2\text{O})$</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH_{hydr} [kcal/mol]</td>
<td>-7.4</td>
<td>-8.3</td>
<td>-7.4</td>
</tr>
<tr>
<td>ΔS_{hydr} [cal/mol·K]</td>
<td>-14.9</td>
<td>-18.6</td>
<td>-15.8</td>
</tr>
</tbody>
</table>

(OT+Zn)²⁺

<table>
<thead>
<tr>
<th>$n \text{(H}_2\text{O})$</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH_{hydr} [kcal/mol]</td>
<td>-9.6</td>
<td>-8.6</td>
</tr>
<tr>
<td>ΔS_{hydr} [cal/mol·K]</td>
<td>-18.9</td>
<td>-15.9</td>
</tr>
</tbody>
</table>
Water binding energies

<table>
<thead>
<tr>
<th>Complex</th>
<th>Binding Energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(^{2+}) \cdots \text{H}_2\text{O}</td>
<td>96</td>
</tr>
<tr>
<td>Peptide \cdots \text{H}_2\text{O}</td>
<td>10</td>
</tr>
<tr>
<td>(OT+H(^{+})) \cdots \text{H}_2\text{O}</td>
<td>7</td>
</tr>
</tbody>
</table>

Consistent with OT-water interaction rather than zinc-water interaction

[2] Lui et al. JACS 2003, 125, 8458
Water binding energies

\[
\begin{align*}
\text{Zn}^{2+} & \cdots \text{H}_2\text{O} & 96 \text{ kcal/mol} \quad [1] \\
\text{Peptide} & \cdots \text{H}_2\text{O} & 10 \text{ kcal/mol} \quad [2] \\
(\text{OT}+\text{H})^+ & \cdots \text{H}_2\text{O} & 7 \text{ kcal/mol} \\
(\text{OT}+\text{Zn})^{2+} & \cdots \text{H}_2\text{O} & 10 \text{ kcal/mol} \\
\end{align*}
\]

Consistent with OT-water interaction rather than zinc-water interaction

[2] Lui et al. JACS 2003, 125, 8458

Hydration and Cross Section Measurements confirm that Zinc is buried in the structure.
Oxytocin (OT) Receptor Interaction

• OT receptor sequence is known, but ligand binding is not.

• The cyclic portion of OT binds to extracellular loop. The linear portion binds to another extracellular loop.

• Isoleucine in third position has been found to be crucial to receptor binding.
Oxytocin (OT) Receptor Interaction

Why do divalent metals increase OT binding?

OT
Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly(NH₂)

\[
\text{Residue 3-5 are found to be crucial for cyclic hormone-
receptor interaction.}
\]

\[
\text{Hydrophobic residue Ile/Phe-3 forms hydrophobic pocket
interaction}
\]

\[
\text{Conserved Gln-4 and Asn-5 interact with conserved residues
in the receptor.}
\]
Side Chain Conformation

- Bare OT
- OT- Zinc Complex
Interaction of the cyclic portion is stabilized by salt bridge interaction between NH3+ and Glutamic Acid in receptor.

Zinc displaces N-terminus from the interior of peptide.
Compact vs. Extended

- Bare OT
- OT-Zinc Complex
Conclusions

Experiments confirm that Zinc is buried in peptide structure.

- A dramatic conformational change occurs as OT binds to zinc.
 Similar change is seen in IT.
- Conformational change appears more favorable for receptor binding.
Acknowledgements

• Dengfeng Liu
 Oli Th. Ehrler
 Xiaohua Zhang

• Professor Bowers

• Bowers Group
 Dr. Thomas Wyttenbach
 Dr. Catherine Carpenter